@article{ZVMMF_2003_43_3_a0,
author = {Nguen Buong},
title = {Convergence rates in regularization under arbitrarily perturbative operators},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {323--327},
year = {2003},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a0/}
}
TY - JOUR AU - Nguen Buong TI - Convergence rates in regularization under arbitrarily perturbative operators JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 323 EP - 327 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a0/ LA - en ID - ZVMMF_2003_43_3_a0 ER -
Nguen Buong. Convergence rates in regularization under arbitrarily perturbative operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 3, pp. 323-327. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a0/
[1] Liskovets O. A., “Regularization of Problems with Arbitrarily Perturbed Operators”, Dokl. Akad. Nauk SSSR, 272:1 (1983), 30–34 | MR | Zbl
[2] Liskovets O. A., “Discrete Regularization of Problems with Arbitrarily Perturbed Monotone Operators”, Dokl. Akad. Nauk SSSR, 289:5 (1986), 1056–1059 | MR
[3] Nguen Buong, “On Ill-Posed Problems in Banach Spaces”, Southeast Asian Bull. Math., 21 (1997), 95–103 | MR
[4] Ryazantseva I. P., “An Algorithm for Solving Nonlinear Monotone Equations with Unknown Input Data Error Bound”, USSR Comput. Math. and Math. Phys., 29:10 (1989), 225–229 | DOI | MR | Zbl
[5] Al'ber Ya. I., Notik A. I., “Geometric Characteristics of Banach Spaces and Approximate Methods for Solving Nonlinear Operator Equations”, Dokl. Akad. Nauk SSSR, 276:5 (1984), 1033–1037 | MR
[6] Hofmann B., Scherzer O., “Factors Influencing the Ill-Posedness of Nonlinear Problems”, Inverse Problems, 10 (1994), 1277–1297 | DOI | MR | Zbl
[7] Vainberg M. M., Variational Method and Methods of Monotone Operators, Nauka, M., 1972 (in Russian) | MR | Zbl