An optimal numerical method for solving a singularly perturbed boundary value problem with a small parameter multiplying highest derivative
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 2, pp. 226-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_2_a6,
     author = {D. V. F\"edorov},
     title = {An optimal numerical method for solving a singularly perturbed boundary value problem with a small parameter multiplying highest derivative},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {226--234},
     year = {2003},
     volume = {43},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a6/}
}
TY  - JOUR
AU  - D. V. Fëdorov
TI  - An optimal numerical method for solving a singularly perturbed boundary value problem with a small parameter multiplying highest derivative
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 226
EP  - 234
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a6/
LA  - ru
ID  - ZVMMF_2003_43_2_a6
ER  - 
%0 Journal Article
%A D. V. Fëdorov
%T An optimal numerical method for solving a singularly perturbed boundary value problem with a small parameter multiplying highest derivative
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 226-234
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a6/
%G ru
%F ZVMMF_2003_43_2_a6
D. V. Fëdorov. An optimal numerical method for solving a singularly perturbed boundary value problem with a small parameter multiplying highest derivative. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 2, pp. 226-234. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a6/

[1] Kellogg R. B., Stynes M., “Optimal approximability of solutions of singularly perturbed two point boundary value problems”, SIAM J. Numer. Analys., 34 (1997), 1808–1816 | DOI | MR | Zbl

[2] Bagaev B. M., Shaidurov V. V., “Variatsionno-raznostnoe reshenie uravneniya s malym parametrom”, Differents. i integrodifferents. ur-niya, VTs SO AN SSSR, Novosibirsk, 1977, 89–99

[3] Bagaev B. M., Shaidurov V. V., Setochnye metody resheniya zadach s pogranichnym sloem, v. 1, Sib. predpriyatie “Nauka” RAN, Novosibirsk, 1998 | MR | Zbl

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] Bakhvalov N. S., “Chislennoe reshenie zadach s negladkimi dannymi i interpolyatsionnye teoremy”, Tr. MI AN SSSR, 166, 1984, 18–22 | MR | Zbl

[6] Nikolskii S. M., “O prodolzhenii funktsii mnogikh peremennykh s sokhraneniem differentsialnykh svoistv”, Matem. sb., 40 (82) (1956), 243–268

[7] Oganesyan L. A., Rivkind V. Ya., Rukhovets L. A., “Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, I”, Tr. seminara, sekts. I, Differents. ur-niya i ikh primenenie, 5, In-t fiz. i matem. AN LitSSR, Vilnyus, 1973 | Zbl