The sensitivity theory for abnormal optimization problems with equality constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 2, pp. 186-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_2_a3,
     author = {A. V. Arutyunov and A. F. Izmailov},
     title = {The sensitivity theory for abnormal optimization problems with equality constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {186--202},
     year = {2003},
     volume = {43},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a3/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - A. F. Izmailov
TI  - The sensitivity theory for abnormal optimization problems with equality constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 186
EP  - 202
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a3/
LA  - ru
ID  - ZVMMF_2003_43_2_a3
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A A. F. Izmailov
%T The sensitivity theory for abnormal optimization problems with equality constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 186-202
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a3/
%G ru
%F ZVMMF_2003_43_2_a3
A. V. Arutyunov; A. F. Izmailov. The sensitivity theory for abnormal optimization problems with equality constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 2, pp. 186-202. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a3/

[1] Levitin E. S., Teoriya vozmuschenii v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1992 | MR

[2] Bonnans F., Shapiro A., “Optimization problems with perturbations: a guided tour”, SIAM Rev., 40:2 (1998), 228–264 | DOI | MR | Zbl

[3] Levy A., “Solution sensitivity from general principles”, SIAM J. Control Optimizat., 40:1 (2001), 1–38 | DOI | MR | Zbl

[4] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Matem. zametki, 67:1 (2000), 57–68 | MR | Zbl

[5] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR

[6] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl

[7] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[8] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Matem. sb., 191:1 (2000), 3–26 | MR | Zbl

[9] Tretyakov A. A., “Neobkhodimye i dostatochnye usloviya optimalnosti $P$-go poryadka”, Zh. vychisl. matem. i matem. fiz., 24:2 (1984), 203–209 | MR

[10] Avakov E. R., “Usloviya ekstremuma dlya gladkikh zadach s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 25:5 (1985), 680–693 | MR | Zbl

[11] Izmailov A. F., Tretyakov A. A., Faktoranaliz nelineinykh otobrazhenii, Nauka, M., 1994 | Zbl

[12] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[13] Borisovich Yu. G., Bliznyakov N. M., Izrailevich Ya. A., Fomenko T. N., Vvedenie v topologiyu, Nauka, M., 1995 | MR | Zbl

[14] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[15] Lempio F., Maurer H., “Differential stability in infinite-dimensional non-linear programming”, Appl. Math. Optimizat., 6 (1980), 139–152 | DOI | MR | Zbl

[16] Hager W. W., Gowda M. S., “Stability in the presence of degeneracy and error estimation”, Math. Program., 85 (1999), 181–192 | DOI | MR | Zbl

[17] Arutyunov A. V., “O svoistvakh kvadratichnykh otobrazhenii v banakhovom prostranstve”, Matem. zametki, 50:4 (1991), 10–20 | MR | Zbl