@article{ZVMMF_2003_43_2_a3,
author = {A. V. Arutyunov and A. F. Izmailov},
title = {The sensitivity theory for abnormal optimization problems with equality constraints},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {186--202},
year = {2003},
volume = {43},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a3/}
}
TY - JOUR AU - A. V. Arutyunov AU - A. F. Izmailov TI - The sensitivity theory for abnormal optimization problems with equality constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 186 EP - 202 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a3/ LA - ru ID - ZVMMF_2003_43_2_a3 ER -
%0 Journal Article %A A. V. Arutyunov %A A. F. Izmailov %T The sensitivity theory for abnormal optimization problems with equality constraints %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2003 %P 186-202 %V 43 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a3/ %G ru %F ZVMMF_2003_43_2_a3
A. V. Arutyunov; A. F. Izmailov. The sensitivity theory for abnormal optimization problems with equality constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 2, pp. 186-202. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a3/
[1] Levitin E. S., Teoriya vozmuschenii v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1992 | MR
[2] Bonnans F., Shapiro A., “Optimization problems with perturbations: a guided tour”, SIAM Rev., 40:2 (1998), 228–264 | DOI | MR | Zbl
[3] Levy A., “Solution sensitivity from general principles”, SIAM J. Control Optimizat., 40:1 (2001), 1–38 | DOI | MR | Zbl
[4] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Matem. zametki, 67:1 (2000), 57–68 | MR | Zbl
[5] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR
[6] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl
[7] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl
[8] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Matem. sb., 191:1 (2000), 3–26 | MR | Zbl
[9] Tretyakov A. A., “Neobkhodimye i dostatochnye usloviya optimalnosti $P$-go poryadka”, Zh. vychisl. matem. i matem. fiz., 24:2 (1984), 203–209 | MR
[10] Avakov E. R., “Usloviya ekstremuma dlya gladkikh zadach s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 25:5 (1985), 680–693 | MR | Zbl
[11] Izmailov A. F., Tretyakov A. A., Faktoranaliz nelineinykh otobrazhenii, Nauka, M., 1994 | Zbl
[12] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[13] Borisovich Yu. G., Bliznyakov N. M., Izrailevich Ya. A., Fomenko T. N., Vvedenie v topologiyu, Nauka, M., 1995 | MR | Zbl
[14] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[15] Lempio F., Maurer H., “Differential stability in infinite-dimensional non-linear programming”, Appl. Math. Optimizat., 6 (1980), 139–152 | DOI | MR | Zbl
[16] Hager W. W., Gowda M. S., “Stability in the presence of degeneracy and error estimation”, Math. Program., 85 (1999), 181–192 | DOI | MR | Zbl
[17] Arutyunov A. V., “O svoistvakh kvadratichnykh otobrazhenii v banakhovom prostranstve”, Matem. zametki, 50:4 (1991), 10–20 | MR | Zbl