A variational formulation of problems of the transverse bending of a latticed plate made of composite material
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 2, pp. 295-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_2_a12,
     author = {L. S. Klabukova},
     title = {A variational formulation of problems of the transverse bending of a latticed plate made of composite material},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {295--307},
     year = {2003},
     volume = {43},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a12/}
}
TY  - JOUR
AU  - L. S. Klabukova
TI  - A variational formulation of problems of the transverse bending of a latticed plate made of composite material
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 295
EP  - 307
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a12/
LA  - ru
ID  - ZVMMF_2003_43_2_a12
ER  - 
%0 Journal Article
%A L. S. Klabukova
%T A variational formulation of problems of the transverse bending of a latticed plate made of composite material
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 295-307
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a12/
%G ru
%F ZVMMF_2003_43_2_a12
L. S. Klabukova. A variational formulation of problems of the transverse bending of a latticed plate made of composite material. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 2, pp. 295-307. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_2_a12/

[1] Pshenichnov G. J., A theory of latticed plates and shells, Word Scient., Singapur etc., 1993 | MR | Zbl

[2] Pshenichnov G. I., Teoriya tonkikh uprugikh setchatykh obolochek i plastinok, Nauka, M., 1982

[3] Skorikov A. V., Yakovleva E. A., “Izgib pryamougolnoi plastiny s uprugim konturom”, Soobsch. po prikl. matem., VTs RAN, M., 1995

[4] Klabukova L. S., “Issledovanie i priblizhennyi metod resheniya kraevykh zadach o poperechnom izgibe setchatoi plastinki”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 282–294 | MR | Zbl