A multidimensional global optimization algorithm based on adaptive diagonal curves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 1, pp. 42-59
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_1_a3,
     author = {D. E. Kvasov and Ya. D. Sergeyev},
     title = {A multidimensional global optimization algorithm based on adaptive diagonal curves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {42--59},
     year = {2003},
     volume = {43},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a3/}
}
TY  - JOUR
AU  - D. E. Kvasov
AU  - Ya. D. Sergeyev
TI  - A multidimensional global optimization algorithm based on adaptive diagonal curves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 42
EP  - 59
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a3/
LA  - ru
ID  - ZVMMF_2003_43_1_a3
ER  - 
%0 Journal Article
%A D. E. Kvasov
%A Ya. D. Sergeyev
%T A multidimensional global optimization algorithm based on adaptive diagonal curves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 42-59
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a3/
%G ru
%F ZVMMF_2003_43_1_a3
D. E. Kvasov; Ya. D. Sergeyev. A multidimensional global optimization algorithm based on adaptive diagonal curves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 1, pp. 42-59. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a3/

[1] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[2] Strongin R. G., Chislennye metody v mnogoekstremalnykh zadachakh, Nauka, M., 1978 | MR | Zbl

[3] Khimmelblau D., Prikladnoe nelineinoe programmirovanie, Mir, M., 1975

[4] Pintér J., Global optimization in action, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[5] Strongin R. G., Sergeyev Ya. D., Global optimization with non-convex constraints: Sequential and parallel algorithms, Kluwer Acad. Publs., Dordrecht, 2000 | MR | Zbl

[6] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[7] Ermakov S. M., Zhiglyavskii A. A., Matematicheskaya teoriya optimalnogo eksperimenta, Nauka, M., 1987

[8] R. Horst, P. M. Pardalos (eds.), Handbook of global optimization, Kluwer Acad. Publs., Dordrecht, 1995 | MR

[9] Horst R., Tuy H., Global Optimization: Deterministic Approaches, 2nd edn., Springer Verlag, Berlin, 1993 ; 3nd edn., 1996 | MR

[10] Gorodetskii S. Yu., “Mnogoekstremalnaya optimizatsiya na osnove triangulyatsii oblasti”, Matem. modelirovanie i optimalnoe upravlenie, Mezhvuzovskii sb., Izd-vo NNGU, N. Novgorod, 1999, 249–268

[11] Piyavskii S. A., “Odin algoritm otyskaniya absolyutnogo ekstremuma funktsii”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 888–896

[12] Strekalovskii A. S., “O poiske globalnogo maksimuma vypuklogo funktsionala na dopustimom mnozhestve”, Zh. vychisl. matem. i matem. fiz., 33:3 (1993), 349–363 | MR

[13] Sergeyev Ya. D., “An information global optimization algorithm with local tuning”, SIAM J. Optimizat., 5:4 (1995), 858–870 | DOI | MR | Zbl

[14] Jones D. R., Perttunen C. D., Stuckman B. E., “Lipschitzian optimization with out the Lipschitz constant”, J. Optimizat. Theory and Appl., 79:1 (1993), 157–181 | DOI | MR | Zbl

[15] Grshagin V. A., “Operatsionnye kharakteristiki nekotorykh algoritmov globalnogo poiska”, Probl. sluchainogo poiska. Zadachi adaptaptsii v tekhn. sistemakh, Zinatne, Riga, 1978, 198–206

[16] Grshiagin V. A., “Ob usloviyakh skhodimosti dlya odnogo klassa algoritmov globalnoi optimizatsii”, Chisl. metody dlya nelineinogo programmirovaniya, Izd-vo KhGU, Kharkov, 1979, 82–84

[17] Pintér J., “Extended univariate algorithms for $n$-dimensional global optimization”, Computation, 1986, no. 36, 91–103 | MR | Zbl

[18] Sergeyev Ya. D., “On convergence of “Divide the Best” global optimization algorithms”, Optimization, 44:3 (1999), 303–325 | DOI | MR

[19] Grishagin V. A., Sergeyev Ya. D., Strongin R. G., “Parallel characteristical algorithms for solving problems of global optimization”, J. Global Optimizat., 10:2 (1997), 185–206 | DOI | MR | Zbl

[20] Butz A. R., “Space filling curves and mathematical programming”, Inform. Control, 12:4 (1968), 314–330 | DOI | MR | Zbl

[21] Sergeyev Ya. D., “An efficient strategy for adaptive partition of $N$-dimensional intervals in the framework of diagonal algorithms”, J. Optimizat. Theory and Appl., 107:1 (2000), 145–168 | DOI | MR | Zbl

[22] Galperin E. A., “The cubic algorithm”, J. Math. Analys. and Appl., 112:2 (1985), 635–640 | DOI | MR | Zbl

[23] Meewella C. C., Mayne D. Q., “Efficient domain partitioning algorithms for global optimization of rational and Lipschitz continuous functions”, J. Optimizat. Theory and Appl., 61:2 (1989), 247–270 | DOI | MR | Zbl

[24] Breiman L., Cutler A., “A deterministic algorithm for global optimization”, Math. Programming, 58 (1993), 179–199 | DOI | MR | Zbl

[25] Wood G. R., “Multidimensional bisection applied to global optimization”, Comput. Math. Appl., 21 (1991), 161–172 | DOI | MR | Zbl

[26] Molinaro A., Pizzuti C., Sergeyev Ya. D., “Acceleration tools for diagonal information global optimization algorithms”, Comput. Optimizat. Appl., 18 (2001), 5–26 | DOI | MR | Zbl

[27] Gergel V. P., “A global optimization algorithm for multivariate functions with Lipschitzian first derivatives”, J. Global Optimizat., 10:3 (1997), 257–281 | DOI | MR | Zbl

[28] Gaviano M., Lera D., “Test functions with variable attraction regions for global optimization problems”, J. Global Optimizat., 13:2 (1998), 207–223 | DOI | MR | Zbl

[29] Knut D., Iskusstvo programmirovaniya, v. 2, Poluchislennye algoritmy, Izd. 3-e, Vilyams, M., 2000

[30] Levy A. V., Montalvo A., “The tunneling algorithm for the global minimization of functions”, SIAM J. Sci. and Stat. Comput., 6 (1985), 15–29 | DOI | MR | Zbl