An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 1, pp. 149-160

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZVMMF_2003_43_1_a11,
     author = {R. V. Efremov},
     title = {An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {149--160},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a11/}
}
TY  - JOUR
AU  - R. V. Efremov
TI  - An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 149
EP  - 160
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a11/
LA  - ru
ID  - ZVMMF_2003_43_1_a11
ER  - 
%0 Journal Article
%A R. V. Efremov
%T An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 149-160
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a11/
%G ru
%F ZVMMF_2003_43_1_a11
R. V. Efremov. An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 1, pp. 149-160. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a11/