@article{ZVMMF_2003_43_1_a11,
author = {R. V. Efremov},
title = {An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {149--160},
year = {2003},
volume = {43},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a11/}
}
TY - JOUR AU - R. V. Efremov TI - An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 149 EP - 160 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a11/ LA - ru ID - ZVMMF_2003_43_1_a11 ER -
%0 Journal Article %A R. V. Efremov %T An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2003 %P 149-160 %V 43 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a11/ %G ru %F ZVMMF_2003_43_1_a11
R. V. Efremov. An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 1, pp. 149-160. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a11/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[2] Lotov A. V., Bushenkov V. A., Kamenev G. K., Metod dostizhimykh tselei. Matematicheskie osnovy i ekologicheskie prilozheniya, Nauka, M., 1997
[3] Gruber P. M., “Approximation of convex bodies”, Convexity and its Applics, Birkhäuser, Basel etc., 1983, 131–162 | MR
[4] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[5] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl
[6] Dzholdybaeva S. M., Kamenev G. K., Eksperimentalnoe issledovanie approksimatsii vypuklykh tel mnogogrannikami, VTs AN SSSR, M., 1991
[7] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR | Zbl
[8] Efremov R. V., “Tochnaya otsenka asimptoticheskoi effektivnosti adaptivnogo algoritma approksimatsii vypuklykh gladkikh tel mnogogrannikami v dvumernom sluchae”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 2000, no. 2, 29–34 | MR
[9] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982
[10] Bushenkov V. A., “Iteratsionnyi metod postroeniya ortogonalnykh proektsii vypuklykh mnogogrannykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1285–1292 | MR | Zbl
[11] Efremov R. V., Kamenev G. K., “Klass algoritmov poliedralnoi approksimatsii vypuklykh tel s apriornoi otsenkoi asimptoticheskoi effektivnosti”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 23–32 | MR | Zbl
[12] Schneider S., Wieaker J. A., “Approximation of convex bodies by polytopes”, Bull. London Math. Soc., 13:2(41) (1981), 149–156 | DOI | MR | Zbl
[13] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies, I”, Forum Math., 5 (1993), 281–297 | DOI | MR | Zbl
[14] Schneider R., “Zur optimalen Approximation konvexer Hyperflächen durch Polyeder”, Math. Ann., 256:3 (1983), 289–301 | DOI | MR
[15] Schneider R., “Polyhedral approximation of smooth convex bodies”, J. Math. Anal. Appl., 128 (1987), 470–474 | DOI | MR | Zbl
[16] Kamenev G. K., “Sopryazhennye adaptivnye algoritmy poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1351–1367 | MR | Zbl
[17] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR