A finite-dimensional conductivity model for closely spaced particles
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 1, pp. 133-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_1_a10,
     author = {A. G. Kolpakov},
     title = {A finite-dimensional conductivity model for closely spaced particles},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {133--148},
     year = {2003},
     volume = {43},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a10/}
}
TY  - JOUR
AU  - A. G. Kolpakov
TI  - A finite-dimensional conductivity model for closely spaced particles
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 133
EP  - 148
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a10/
LA  - ru
ID  - ZVMMF_2003_43_1_a10
ER  - 
%0 Journal Article
%A A. G. Kolpakov
%T A finite-dimensional conductivity model for closely spaced particles
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 133-148
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a10/
%G ru
%F ZVMMF_2003_43_1_a10
A. G. Kolpakov. A finite-dimensional conductivity model for closely spaced particles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 1, pp. 133-148. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_1_a10/

[1] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[2] Lionc Zh.-L., “Zamechaniya po nekotorym vychislitelnym aspektam metoda gomogenizatsii v kompozitnykh materialakh”, Vychisl. metody v matem., geofiz. i optimalnom upravlenii, Nauka, Novosibirsk, 1978, 5–19

[3] Borcea L., Papanicolaou G., “Network approximation for transport properties of high contrast materials”, SIAM J. Appl. Math., 58:2 (1998), 501–539 | DOI | MR | Zbl

[4] Kozlov S. M., “Geometrical aspects of averaging”, Russ. Math. Surveys, 44:22 (1989), 91–144 | DOI | MR | Zbl

[5] Clerc J. P., Giraud G., Laugier J. M., Luck J. M., “The electrical conductivity of binary disordered systems, percolation clasters, fractals and related models”, Advanced Phys., 39:3 (1990), 191–309 | DOI

[6] McLachlan P., Blaszkeviccz M., Newnham R., “Electrical resestivity of composites”, J. Amer. Ceram Soc., 73:8 (1990), 2187–2203 | DOI

[7] Grimmett G., Percolation, Springer, New York, 1989 | MR | Zbl

[8] Koplik J., “Greeping flow in two-dimensial networks”, J. Fluid Mech., 119 (1982), 219–247 | DOI | Zbl

[9] Keller J. B., “Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders”, J. Appl. Phys., 34:4 (1963), 991–993 | DOI | Zbl

[10] Smythe W. R., Static and dynamic electricity, 2nd ed., McGrow-Hill, New York, 1950; Smait V., Elektrostatika i elektrodinamika, Izd-vo inostr. lit., M., 1954

[11] Ekeland I., Temam R., Convex analysis and variational problems, North Holland, Amsterdam, 1976 ; Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl | MR

[12] Medvedev N. N., Metod Voronogo–Delone i issledovanie struktury nekristallicheskikh sistem, Izd-vo SO RAN, Novosibirsk, 2000

[13] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | Zbl

[14] Berlyand L. V., “Usrednenie uravnenii teorii uprugosti v oblasti s melkozernistoi granitsei. 1; 2”, Teoriya funktsii, funkts. analiz i prilozh., 39 (1983), 16–25 ; 40, 16–23 | Zbl | Zbl

[15] Kolpakov A. G., “O skleennykh telakh”, Differents. ur-niya, 1992, no. 8, 2389–2398

[16] L. Brautman, R. Krok (red.), Kompozitsionnye materialy, v. 1–7, Mir, M.; Mashinostr., 1978

[17] Kesten H., Percolation theory for mathematicians, Birkhäuser, Stuttgart, 1982 ; Kesten Kh., Teoriya protekaniya dlya matematikov, Mir, M., 1986 | MR | Zbl | MR | Zbl