A nonclassical optimality condition in a problem of population control with age distribution
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 11, pp. 1659-1665 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_11_a4,
     author = {A. V. Arguchintsev},
     title = {A nonclassical optimality condition in a problem of population control with age distribution},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1659--1665},
     year = {2003},
     volume = {43},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_11_a4/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
TI  - A nonclassical optimality condition in a problem of population control with age distribution
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 1659
EP  - 1665
VL  - 43
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_11_a4/
LA  - ru
ID  - ZVMMF_2003_43_11_a4
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%T A nonclassical optimality condition in a problem of population control with age distribution
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 1659-1665
%V 43
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_11_a4/
%G ru
%F ZVMMF_2003_43_11_a4
A. V. Arguchintsev. A nonclassical optimality condition in a problem of population control with age distribution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 11, pp. 1659-1665. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_11_a4/

[1] Poluektov R. A. (red.), Dinamicheskaya teoriya biologicheskikh populyatsii, Nauka, M., 1974

[2] Blokhinov Yu. V., “Kachestvennoe issledovanie modeli dinamiki populyatsii, raspredelennoi po vozrastu i zhiznennosti”, Modelirovanie protsessov ekologich. razvitiya, 2, VNII sistemnykh issledovanii, M., 1982, 64–69

[3] Sokolov A. V., “Ob odnom podkhode k opisaniyu rozhdaemosti v demograficheskikh modelyakh”, Modelirovanie protsessov ekologich. razvitiya, 2, VNII sistemnykh issledovanii, M., 1982, 77–85

[4] Song J., Yu J.-U., Population control system, Springer, New York, 1987

[5] Chan W. L., Guo B. Z., “Optimal birth control of population dynamics”, J. Math. Analys. and Appl., 144 (1989), 532–552 | DOI | MR | Zbl

[6] Chan W. L., Guo B. Z., “Overtaking optimal control problem of age-dependent populations with infinite horizon”, J. Math. Analys. and Appl., 150 (1990), 41–53 | DOI | MR | Zbl

[7] Brokate M., “Pontryagin's principle for control problems in age-dependent population dynamics”, J. Math. Biol., 23 (1985), 75–101 | MR | Zbl

[8] Arguchintsev A. V., Krutikova O. A., “Optimizatsiya polulineinykh giperbolicheskikh sistem s gladkimi granichnymi upravleniyami”, Izv. vuzov. Matematika, 2001, no. 2, 3–12 | MR | Zbl

[9] Burdukovskaya A. V., Vasilev O. V., “Optimizatsiya sistem kanonicheskikh giperbolicheskikh uravnenii s gladkimi ogranichennymi upravleniyami”, Zh. vychisl. matem. i matem. fiz., 40:1 (2000), 43–53 | MR | Zbl