@article{ZVMMF_2003_43_11_a2,
author = {Yu. M. Nechepurenko and M. Sadkane},
title = {The {Newton{\textendash}Kantorovich} method for computing invariant subspaces},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1627--1641},
year = {2003},
volume = {43},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_11_a2/}
}
TY - JOUR AU - Yu. M. Nechepurenko AU - M. Sadkane TI - The Newton–Kantorovich method for computing invariant subspaces JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 1627 EP - 1641 VL - 43 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_11_a2/ LA - en ID - ZVMMF_2003_43_11_a2 ER -
%0 Journal Article %A Yu. M. Nechepurenko %A M. Sadkane %T The Newton–Kantorovich method for computing invariant subspaces %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2003 %P 1627-1641 %V 43 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_11_a2/ %G en %F ZVMMF_2003_43_11_a2
Yu. M. Nechepurenko; M. Sadkane. The Newton–Kantorovich method for computing invariant subspaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 11, pp. 1627-1641. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_11_a2/
[1] Godunov S. K., Sadkane M., Robbé M., “Smoothing techniques and computation of invariant subspaces of elliptic operators”, Appl. Numer. Math., 33 (2000), 341–347 | DOI | MR | Zbl
[2] Ortega J. M., Numerical analysis. A second course, Acad. Press, New York, 1972 | MR | Zbl
[3] Fokkema D., Sleijpen G. L. G., Van der Vorst H. A., “Accelerated inexact Newton schemes for large systems of nonlinear equations”, SIAM J. Sci. Comput., 19 (1998), 657–674 | DOI | MR | Zbl
[4] Godunov S. K., Nechepurenko Yu. M., “Estimates of the convergence rate of the Newton method for computing invariant subspaces”, Comput. Maths. Math. Phys., 42 (2002), 739–746 | MR | Zbl
[5] Godunov S. K., Modern aspects of linear algebra, Transl. of Math. Monographs, 175, Amer. Math. Soc., 1998 | MR | Zbl
[6] Bai Z., Demmel J., Gu M., “Inverse free parallel spectral divide and conquer algorithms for nohsymmetric eigehproblems”, Numer. Math., 76 (1997), 279–308 | DOI | MR | Zbl
[7] Malyshev A. N., “Parallel algorithm for solving some spectral problems of linear algebra”, Linear Algebra Appl., 188–189 (1993), 489–520 | DOI | MR | Zbl
[8] Golub G. H., Van Loan C. F., Matrix computations, Hopkins Univ. Press, Baltimore, 1989 | MR | Zbl
[9] Bulgakov A. Ya., Godunov S. K., “Circular dichotomy of a matrix spectrum”, Siberian Math. J., 29 (1988), 734–744 | DOI | MR | Zbl
[10] Stewart G., Sun J., Matrix perturbation theory, Acad. Press, San Diego, 1990 | MR | Zbl
[11] Hackbusch W., Multi-grid methods and applications, Springer ser. in comput. math., Springer, Berlin, 1985 | Zbl
[12] Varga R. S., Matrix iterative analysis, Ser. in Automatic Computation, Prentice-Hall, Englewood Cliffs, New Jersey, 1963 | MR | Zbl
[13] Saad Y., Iterative methods for sparse linear systems, PWS Publishing, Boston, 1996 | Zbl
[14] Bartels R., Stewart G. W., “Algorithm 432: Solution of the matrix equation $AX+XB=C$”, Communs ACM, 15 (1972), 820–826 | DOI
[15] Robbe M., Sadkane M., “A convergence analysis of GMRES and FOM methods for Sylvester equations”, Numer. Algorithms, 30 (2002), 71–89 | DOI | MR | Zbl