Monte Carlo method of calculation the derivatives of solution to stationary diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 10, pp. 1517-1529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_10_a8,
     author = {A. V. Burmistrov and G. A. Mikhailov},
     title = {Monte {Carlo} method of calculation the derivatives of solution to stationary diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1517--1529},
     year = {2003},
     volume = {43},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a8/}
}
TY  - JOUR
AU  - A. V. Burmistrov
AU  - G. A. Mikhailov
TI  - Monte Carlo method of calculation the derivatives of solution to stationary diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 1517
EP  - 1529
VL  - 43
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a8/
LA  - ru
ID  - ZVMMF_2003_43_10_a8
ER  - 
%0 Journal Article
%A A. V. Burmistrov
%A G. A. Mikhailov
%T Monte Carlo method of calculation the derivatives of solution to stationary diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 1517-1529
%V 43
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a8/
%G ru
%F ZVMMF_2003_43_10_a8
A. V. Burmistrov; G. A. Mikhailov. Monte Carlo method of calculation the derivatives of solution to stationary diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 10, pp. 1517-1529. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a8/

[1] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[2] Ikramov Kh. D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR | Zbl

[3] Hammersley I. M., Morton K. W., “A new Monte Carlo technque-antithetic variates”, Proc. Cambrige Philos. Soc., 52 (1956), 449–475 | DOI | MR | Zbl

[4] Milshtein G. N., “The solving of boundary value problems by numerical integration of stochastic equations”, Math. and Comput. Simulation, 38 (1995), 77–85 | DOI | MR | Zbl

[5] Makarov P. H., “Kombinirovannye otsenki metoda Monte–Karlo dlya resheniya tretei kraevoi zadachi dlya uravneniya parabolicheskogo tipa”, Rus. J. Numer. Analys. and Math. Modelling, 17:6 (2002), 501–515

[6] Mikhailov G. A., “Novye metody Monte–Karlo dlya resheniya uravneniya Gelmgoltsa”, Dokl. RAN, 326:6 (1992), 943–947

[7] Mikhailov G. A., Makarov R. N., “Reshenie kraevykh zadach vtorogo i tretego roda”, Sibirskii matem. zhurnal, 38:3 (1997), 603–614 | Zbl

[8] Mikhailov G. A., Vesovye metody Monte-Karlo, Izd-vo SO RAN, Novosibirsk, 2000 | MR