@article{ZVMMF_2003_43_10_a5,
author = {S. A. Nazarov and M. Specovius-Neugebauer},
title = {Artificial boundary conditions providing superpolynomial error estimates for the {Neumann} problem in a layered domain},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1475--1486},
year = {2003},
volume = {43},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a5/}
}
TY - JOUR AU - S. A. Nazarov AU - M. Specovius-Neugebauer TI - Artificial boundary conditions providing superpolynomial error estimates for the Neumann problem in a layered domain JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 1475 EP - 1486 VL - 43 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a5/ LA - ru ID - ZVMMF_2003_43_10_a5 ER -
%0 Journal Article %A S. A. Nazarov %A M. Specovius-Neugebauer %T Artificial boundary conditions providing superpolynomial error estimates for the Neumann problem in a layered domain %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2003 %P 1475-1486 %V 43 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a5/ %G ru %F ZVMMF_2003_43_10_a5
S. A. Nazarov; M. Specovius-Neugebauer. Artificial boundary conditions providing superpolynomial error estimates for the Neumann problem in a layered domain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 10, pp. 1475-1486. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a5/
[1] Fedoryuk M. V., “Uravnenie Gelmgoltsa v volnovode (otgonka kraevogo usloviya ot beskonechnosti)”, Zh. vychisl. matem i matem. fiz., 12:2 (1972), 374–387
[2] Gordon V. A., “O smeshannoi kraevoi zadache, imitiruyuschei zadachu Koshi”, Uspekhi matem. nauk, 33:5 (1978), 181–182 | MR | Zbl
[3] Konstantinov A. A., Maslov V. P., Chebotarëv A. M., “Snos kraevykh uslovii dlya uravnenii s chastnymi proizvodnymi”, Zh. vychisl. matem. i matem. fiz., 28:12 (1988), 1763–1778 | MR | Zbl
[4] Sofronov I. L., “Usloviya polnoi prozrachnosti na sfere dlya trekhmernogo volnovogo uravneniya”, Dokl. RAN, 326:6 (1992), 453–457
[5] Sofronov I. L., “Artificial boundary conditions of absolute transparency for two- and three-dimensional external time-dependent scattering problems”, Euro. J. Appl. Math., 9:6 (1998), 561–588 | DOI | MR | Zbl
[6] Specovius-Neugebauer M., “Approximation of the Stokes–Dirichlet problem in domains with cylindrical outlets”, SIAM J. Math. Analys., 30 (1999), 645–677 | DOI | MR | Zbl
[7] Nazarov S. A., Specovius-Neugebauer M., “Nonlinear artificial boundary conditions with pointwise error estimates for the exterior three dimensional Navier–Stokes problem”, Math. Nachr., 252:5 (2003), 86–105 | DOI | MR | Zbl
[8] Nazarov S. A., Shpekovius-Noigebauer M., “Iskusstvennye kraevye usloviya dlya ellipticheskikh sistem v oblastyakh s konicheskimi vykhodami na beskonechnost”, Dokl. RAN, 37:3 (2001), 317–320 | MR
[9] Tsynkov S. V., “Numerical solution of problems on unbounded domains”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl
[10] Nazarov S. A., “Asimptotika resheniya kraevoi zadachi v tonkom tsilindre s negladkoi bokovoi poverkhnostyu”, Izv. RAN. Ser. matem., 57:1 (1993), 202–239 | Zbl
[11] Nazarov S. A., “Asimptoticheskie razlozheniya na beskonechnosti reshenii zadachi teorii uprugosti v sloe”, Tr. Mosk. matem. ob-va, 60, 1998, 3–97
[12] Nazarov S. A., Pileckas K., “The asymptotic properties of the solution to the Stokes problem in domains that are layer-like at infinity”, J. Math. Fluid Mech., 1:2 (1999), 131–167 | DOI | MR | Zbl
[13] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1963, 219–292
[14] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991
[15] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, OVM AN SSSR, M., 1983 | MR
[16] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl
[17] Nazarov S. A., Specovius-Neugebauer M., “Approximation of exterior problems. Optimal conditions for the Laplacian”, Analysis, 16:4 (1996), 305–324 | MR | Zbl
[18] Nazarov C. A., Shpekovius-Noigebauer M., “O pogreshnostyakh pri approksimatsii neogranichennykh tel ogranichennymi”, Prikl. matem. i mekhan., 62:4 (1998), 650–663 | MR
[19] Bayliss A., Gunzburger M., Turkel E., “Boundary conditions for the numerical solutions of elliptic equations in exterior regions”, SIAM J. Appl. Math., 42 (1982), 430–451 | DOI | MR | Zbl