A system of primal-dual variational inequalities and monotony conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 10, pp. 1459-1466 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_10_a3,
     author = {I. V. Konnov},
     title = {A system of primal-dual variational inequalities and monotony conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1459--1466},
     year = {2003},
     volume = {43},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a3/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - A system of primal-dual variational inequalities and monotony conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 1459
EP  - 1466
VL  - 43
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a3/
LA  - ru
ID  - ZVMMF_2003_43_10_a3
ER  - 
%0 Journal Article
%A I. V. Konnov
%T A system of primal-dual variational inequalities and monotony conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 1459-1466
%V 43
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a3/
%G ru
%F ZVMMF_2003_43_10_a3
I. V. Konnov. A system of primal-dual variational inequalities and monotony conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 10, pp. 1459-1466. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a3/

[1] Konnov I. V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1324–1337 | MR | Zbl

[2] Harker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory algorithms and applications”, Math. Program., 48:2 (1990), 161–220 | DOI | MR | Zbl

[3] Nagurney A., Network economics: A variational inequality approach, Kluwer Acad. Publs., Dordrecht, 1999 | MR

[4] Antipin A. S., “Metody resheniya sistem zadach vypuklogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 27:3 (1987), 368–376 | MR

[5] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[6] Martinet B., “Regularization d'inéquations variationnelles par approximations successives”, Rev. Fr. Inf. Rech. Operat. R, 4:3 (1970), 154–159 | MR

[7] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimizat., 14:5 (1976), 877–898 | DOI | MR | Zbl

[8] Patriksson M., Nonlinear programming and variational inequality problems: A unified approach, Kluwer Acad. Publs., Dordrecht, 1999 | MR | Zbl

[9] Ibaraki S., Fukushima M., Ibaraki T., “Primal-dual proximal point algorithm for linearly constrained convex programming problems”, Comput. Optimizat. Appl., 1:3 (1992), 207–226 | MR | Zbl

[10] Konnov I. V., “Priblizhennye metody dlya pryamo-dvoistvennykh variatsionnykh neravenstv smeshannogo tipa”, Izv. vuzov. Matematika, 2000, no. 12, 55–66 | MR | Zbl

[11] Konnov I. V., Metody resheniya konechnomernykh variatsionnykh neravenstv, DAS, Kazan, 1998 | MR

[12] Lions P. L., Mercier B., “Splitting algorithm for the sum of two nonlinear operators”, SIAM J. Numer. Analys., 16:6 (1979), 964–979 | DOI | MR | Zbl

[13] Kun G. U., “Ob odnoi teoreme Valda”, Lineinye neravenstva i smezhnye voprosy, Izd-vo inostr. lit., M., 1959, 363–371

[14] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Progress, M., 1975