@article{ZVMMF_2003_43_10_a3,
author = {I. V. Konnov},
title = {A system of primal-dual variational inequalities and monotony conditions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1459--1466},
year = {2003},
volume = {43},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a3/}
}
TY - JOUR AU - I. V. Konnov TI - A system of primal-dual variational inequalities and monotony conditions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 1459 EP - 1466 VL - 43 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a3/ LA - ru ID - ZVMMF_2003_43_10_a3 ER -
I. V. Konnov. A system of primal-dual variational inequalities and monotony conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 10, pp. 1459-1466. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_10_a3/
[1] Konnov I. V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1324–1337 | MR | Zbl
[2] Harker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory algorithms and applications”, Math. Program., 48:2 (1990), 161–220 | DOI | MR | Zbl
[3] Nagurney A., Network economics: A variational inequality approach, Kluwer Acad. Publs., Dordrecht, 1999 | MR
[4] Antipin A. S., “Metody resheniya sistem zadach vypuklogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 27:3 (1987), 368–376 | MR
[5] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR
[6] Martinet B., “Regularization d'inéquations variationnelles par approximations successives”, Rev. Fr. Inf. Rech. Operat. R, 4:3 (1970), 154–159 | MR
[7] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimizat., 14:5 (1976), 877–898 | DOI | MR | Zbl
[8] Patriksson M., Nonlinear programming and variational inequality problems: A unified approach, Kluwer Acad. Publs., Dordrecht, 1999 | MR | Zbl
[9] Ibaraki S., Fukushima M., Ibaraki T., “Primal-dual proximal point algorithm for linearly constrained convex programming problems”, Comput. Optimizat. Appl., 1:3 (1992), 207–226 | MR | Zbl
[10] Konnov I. V., “Priblizhennye metody dlya pryamo-dvoistvennykh variatsionnykh neravenstv smeshannogo tipa”, Izv. vuzov. Matematika, 2000, no. 12, 55–66 | MR | Zbl
[11] Konnov I. V., Metody resheniya konechnomernykh variatsionnykh neravenstv, DAS, Kazan, 1998 | MR
[12] Lions P. L., Mercier B., “Splitting algorithm for the sum of two nonlinear operators”, SIAM J. Numer. Analys., 16:6 (1979), 964–979 | DOI | MR | Zbl
[13] Kun G. U., “Ob odnoi teoreme Valda”, Lineinye neravenstva i smezhnye voprosy, Izd-vo inostr. lit., M., 1959, 363–371
[14] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Progress, M., 1975