Finite-difference scheme for singularly perturbed boundary value problems associated with solutions to spherically symmetric elliptic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 9, pp. 1383-1393 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_9_a9,
     author = {I. R. Rafatov and S. N. Sklyar},
     title = {Finite-difference scheme for singularly perturbed boundary value problems associated with solutions to spherically symmetric elliptic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1383--1393},
     year = {2002},
     volume = {42},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a9/}
}
TY  - JOUR
AU  - I. R. Rafatov
AU  - S. N. Sklyar
TI  - Finite-difference scheme for singularly perturbed boundary value problems associated with solutions to spherically symmetric elliptic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1383
EP  - 1393
VL  - 42
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a9/
LA  - ru
ID  - ZVMMF_2002_42_9_a9
ER  - 
%0 Journal Article
%A I. R. Rafatov
%A S. N. Sklyar
%T Finite-difference scheme for singularly perturbed boundary value problems associated with solutions to spherically symmetric elliptic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1383-1393
%V 42
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a9/
%G ru
%F ZVMMF_2002_42_9_a9
I. R. Rafatov; S. N. Sklyar. Finite-difference scheme for singularly perturbed boundary value problems associated with solutions to spherically symmetric elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 9, pp. 1383-1393. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a9/

[1] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[3] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 842–859

[4] Sklyar S. N., “A projective version of the integral-interpolation method and it's application for the discretization of the singular perturbation problems”, Advanced Math. Comput. and Applic., Proc. Internat. Conf. AMCA-95 (Novosibirsk, Russia, 20–24 June, 1995), NCC Pablisher, Novosibirsk, 1995, 380–385 | MR

[5] Sklyar C. H., Bakirov Zh. Zh., “Proektsionnyi metod postroeniya raznostnykh skhem dlya zadach s pogranichnymi sloyami”, Izv. NAN Kyrgyzskoi Respubliki. Ekho nauki, 1997, no. 2–3, 36–47

[6] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[7] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[9] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[10] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[11] Farrell P. A., “Sufficient conditions for uniform convergence of a class of difference schemes for a singularly perturbed problem”, IMA J. Numer. Analys., 7 (1987), 459–472 | DOI | MR | Zbl