@article{ZVMMF_2002_42_9_a8,
author = {P. N. Vabishchevich and A. A. Samarskii},
title = {Monotone finite-difference schemes on triangular grids for convection-diffusion problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1368--1382},
year = {2002},
volume = {42},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a8/}
}
TY - JOUR AU - P. N. Vabishchevich AU - A. A. Samarskii TI - Monotone finite-difference schemes on triangular grids for convection-diffusion problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1368 EP - 1382 VL - 42 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a8/ LA - ru ID - ZVMMF_2002_42_9_a8 ER -
%0 Journal Article %A P. N. Vabishchevich %A A. A. Samarskii %T Monotone finite-difference schemes on triangular grids for convection-diffusion problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1368-1382 %V 42 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a8/ %G ru %F ZVMMF_2002_42_9_a8
P. N. Vabishchevich; A. A. Samarskii. Monotone finite-difference schemes on triangular grids for convection-diffusion problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 9, pp. 1368-1382. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a8/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[2] Forsythe G. E., Wasow W. R., Finite difference methods for partial differential equations, Wiley, New York, 1960 | MR | Zbl
[3] Morton K. W., Numerical solution of convection-diffusion problems, Chapman and Hall, London, 1996 | MR | Zbl
[4] Ross H.-G., Stynes M., Tobiska L., “Numerical methods for singular perturbed differential equations”, Convection-Diffusion and Flow Problems, Springer, Berlin, 1995 | MR
[5] Gillbary D., Trudinger N., Elliptic partial differential equations of second order, Springer, Berlin, 1983 | MR
[6] Karetkina H. B., “Bezuslovno ustoichivaya raznostnaya skhema dlya parabolicheskikh uravnenii, soderzhaschikh pervye proizvodnye”, Zh. vychisl. matem. i matem. fiz., 20:1 (1980), 236–240 | MR | Zbl
[7] Vabischevich P. N., “Monotonnye raznostnye skhemy dlya zadach konvektsii-diffuzii”, Differents. ur-niya, 30 (1994), 503–513
[8] Samarskii A. A., “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93 | MR
[9] Samarskii A. A., Vabischevich P. N., “Monotonnye raznostnye skhemy na treugolnykh setkakh”, Dokl. RAN, 371 (2000), 742–746 | MR
[10] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999
[11] Courant R., Hilbert D., Methods of mathematical physics, Interscience, New York, 1953 | MR
[12] Protter M. H., Weinberger H. F., Maximum principles in differential equations, Springer, New York, 1984 | MR | Zbl
[13] Aurenhammer F., “Voronoi diagrams – A survey of a fundamental geometric data structure”, ACM Comput. Surveys, 23 (1991), 345–405 | DOI
[14] Fortune S., “Voronoi diagrams and Delaunay triangulations”, Comput. Euclidean Geometry, Lect. Notes Ser. Cormput., 1, World Scient., Singapore, 1992, 193–233 | MR
[15] Laslo M., Vychislitelnaya geometriya i kompyuternaya grafika na S++, Binom, M., 1997
[16] George P.-L., Borouchaki H., “Delaunay triangulation and meshing”, Appl. Finite elements, Hermes, Paris, 1998 | MR
[17] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A. i dr., Raznostnye skhemy na neregulyarnykh setkakh, Kriterii, Minsk, 1996
[18] Shashkov M., Conservative finite-difference methods on general grids, CRC Press, Boca Raton, 1996 | MR | Zbl
[19] Ardelyan H. B., Kosmachevskii K. V., “Neyavnyi svobodno-lagranzhev metod rascheta dvumernykh magnitogazodinamicheskikh techenii”, Matem. modelirovanie, Izd-vo Mosk. un-ta, M., 1993, 25–44
[20] Samarskii A. A., “Uravneniya parabolicheskogo tipa i raznostnye metody ikh resheniya”, Tr. Vses. soveschaniya po differents. ur-niyam, 1958, Izd-vo AN ArmSSR, Erevan, 1960, 148–160
[21] Vabischevich P. N., Samarskii A. A., “Raznostnye skhemy dlya zadach konvektsii-diffuzii na neregulyarnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 40:5 (2000), 726–739 | MR
[22] Samarskii A. A., Vabishchevich P. N., Computational heat transfer, Wiley, Chichester, 1995
[23] Golant E. I., “O sopryazhennykh semeistvakh raznostnykh skhem dlya uravnenii parabolicheskogo tipa s mladshimi chlenami”, Zh. vychisl. matem. i matem. fiz., 18:5 (1978), 1162–1169 | MR | Zbl
[24] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl
[25] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[26] Briggs D. G., “A finite difference scheme for the incompressible advection-diffusion equation”, Comput. Meths. Appl. Mech. Engng., 6 (1975), 233–241 | DOI | MR | Zbl
[27] Joseph M., “Finite difference representations of vorticity tyransport”, Comput. Meths. Appl. Mech. Engng., 39 (1983), 107–116 | DOI | MR | Zbl
[28] De G. Allen D. N., Southwell R. V., “Relaxation methods applied to determine the motion in two dimensions of a viscous fluid past a fixed cylinder”, Quart. J. Mech. and Appl. Math., 8 (1955), 129–145 | DOI | MR | Zbl
[29] Doolan E. P., Miller J. J. H., Schilders W. H. A., Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980 | MR | Zbl
[30] Patankar S. V., Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C., 1980 | Zbl
[31] Chien J. C., “A general finite-difference formulation with application to Navier–Stokes equations”, Comput. and Fluids, 5 (1977), 15–31 | DOI | Zbl
[32] Samarskii A. A., “O monotonnykh raznostnykh skhemakh dlya ellipticheskikh i parabolicheskikh uravnenii v sluchae nesamosopryazhennogo ellipticheskogo operatora”, Zh. vychisl. matem. i matem. fiz., 5:3 (1965), 548–551 | MR | Zbl
[33] Samarskii A. A., Vabischevich P. N., “Nelineinye monotonnye skhemy dlya uravneniya perenosa”, Dokl. AN SSSR, 361 (1998), 21–23 | MR