@article{ZVMMF_2002_42_9_a5,
author = {I. V. Konnov},
title = {The dual approach to one class of mixed variational inequalities},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1324--1337},
year = {2002},
volume = {42},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a5/}
}
I. V. Konnov. The dual approach to one class of mixed variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 9, pp. 1324-1337. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_9_a5/
[1] Konnov I. V., “Priblizhennye metody dlya pryamo-dvoistvennykh variatsionnykh neravenstv smeshannogo tipa”, Izv. vuzov. Matematika, 2000, no. 12, 55–66 | MR | Zbl
[2] Marker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Program., 48:2 (1990), 161–220 | MR
[3] Errou K. Dzh., Gurvits A., Udzava X., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, Izd-vo inostr. lit., M., 1962
[4] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[5] Intrilligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Progress, M., 1975
[6] Bulavskii V. A., “Kvazilineinoe programmirovanie i vektornaya optimizatsiya”, Dokl. AN SSSR, 257:4 (1981), 788–791 | MR
[7] Antipin A. S., “Ob odnoi zadache ravnovesiya i metodakh ee resheniya”, Avtomatika i telemekhan., 1986, no. 9, 75–82 | MR | Zbl
[8] Antipin A. S., “Metody resheniya sistem zadach vypuklogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 27:3 (1987), 368–376 | MR
[9] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR
[10] Lions P. L., Mercier B., “Splitting algorithm for the sum of two nonlinear operators”, SIAM J. Numer. Analys., 16:6 (1979), 964–979 | DOI | MR | Zbl
[11] Gabay D., “Application of the method of multipliers to variational inequalities”, Augmented Lagrangian Methods: Appl. Numer. Solution of Boundary-Value Problems, North-Holland, Amsterdam, 1983, 299–331
[12] Tseng P., “Applications of a splitting algorithm to decomposition in convex programming and variational inequalities”, Math. Program., 29:1 (1991), 119–138 | MR | Zbl
[13] Passty G. B., “Ergodic convergence to zero of the sum of two monotone operators in Hilbert space”, J. Math. Analys. and Appl., 72:2 (1979), 383–390 | DOI | MR | Zbl
[14] Konnov I. V., “Kombinirovannyi metod dlya resheniya variatsionnykh neravenstv s monotonnymi operatorami”, Zh. vychisl. matem. i matem. fiz., 39:7 (1999), 1091–1097 | MR | Zbl
[15] Konnov I. V., Metody resheniya konechnomernykh variatsionnykh neravenstv, DAS, Kazan, 1998 | MR
[16] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin etc., 2001 | MR
[17] A. S. Manne (ed.), Economic equilibrium: model formulation and solution, Math. Program. Study, 23, North-Holland, Amsterdam, 1985 | MR
[18] Kun G. U., “Ob odnoi teoreme Valda”, Lineinye neravenstva i smezhnye voprosy, Izd-vo inostr. lit., M., 1959, 363–371
[19] Ashmanov S. A., Vvedenie v matematicheskuyu ekonomiku, Nauka, M., 1984 | MR | Zbl
[20] P. T. Harker (ed.), Spatial price equilibrium: advances in theory, computation and application, Springer, Berlin etc., 1985 | MR | Zbl