@article{ZVMMF_2002_42_8_a2,
author = {O. V. Karabanova and A. I. Kozlov and M. Yu. Kokurin},
title = {Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1115--1128},
year = {2002},
volume = {42},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a2/}
}
TY - JOUR AU - O. V. Karabanova AU - A. I. Kozlov AU - M. Yu. Kokurin TI - Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1115 EP - 1128 VL - 42 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a2/ LA - ru ID - ZVMMF_2002_42_8_a2 ER -
%0 Journal Article %A O. V. Karabanova %A A. I. Kozlov %A M. Yu. Kokurin %T Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1115-1128 %V 42 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a2/ %G ru %F ZVMMF_2002_42_8_a2
O. V. Karabanova; A. I. Kozlov; M. Yu. Kokurin. Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 8, pp. 1115-1128. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a2/
[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR
[2] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR
[3] Bakushinsky A., Goncharsky A., Ill-posed problems: theory and applications, Kluwer Acad. Publs, Dordrecht, 1994 | MR
[4] Bakushinskii A. B., “Iteratsionnye metody bez nasyscheniya dlya resheniya vyrozhdennykh nelineinykh operatornykh uravnenii”, Dokl. RAN, 344:1 (1995), 7–8 | MR
[5] Bakushinskii A. B., “Iterativnye metody dlya resheniya nelineinykh operatornykh uravnenii bez svoistva regulyarnosti”, Fundamentalnaya i prikl. matem., 3:4 (1997), 559–563
[6] Kokurin M. Yu., Yusupova N. A., “O nevyrozhdennykh otsenkakh skorosti skhodimosti iteratsionnykh metodov resheniya nekorrektnykh nelineinykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 40:6 (2000), 832–837 | MR | Zbl
[7] Bakushinskii A. B., Kokurin M. Yu., Yusupova N. A., “Neobkhodimye usloviya skhodimosti iteratsionnykh metodov resheniya nelineinykh operatornykh uravnenii bez svoistva regulyarnosti”, Zh. vychisl. matem. i matem. fiz., 40:7 (2000), 986–996 | MR
[8] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR
[9] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR
[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl
[11] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[12] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[13] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl
[14] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977 | MR | Zbl
[15] Bakushinskii A. B., “Iterativnye metody gradientnogo tipa dlya neregulyarnykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 1962–1966 | MR | Zbl
[16] Bakushinskii A. B., “Iterativnye metody gradientnogo tipa s proektirovaniem na fiksirovannoe podprostranstvo dlya resheniya neregulyarnykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1447–1450 | MR
[17] Kokurin M. Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, MarGU, Ioshkar-Ola, 1998
[18] Scherzer O., “An iterative multi level algorithm for solving nonlinear ill-posed problems”, Numer. Math., 80 (1998), 579–600 | DOI | MR | Zbl
[19] Deuflhard P., Engl H., Scherzer O., “A convergence analysis of iterative methods for the solution of nonlinear illposed problems under affinely invariant conditions”, Inverse Problems, 14 (1998), 1081–1106 | DOI | MR | Zbl
[20] Tautenhahn U., “On a general regularization scheme for nonlinear ill-posed problems: II. Regularization in Hilbert scales”, Inverse Problems, 14 (1998), 1607–1616 | DOI | MR | Zbl
[21] Kaltenbacher B., “Some Newton-type methods for the regularization of nonlinear ill-posed problems”, Inverse Problems, 13 (1997), 729–753 | DOI | MR | Zbl
[22] Alekseev B. M., Tikhomirov B. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[23] Ramm A. G., Smirnova A. B., “A numerical method for solving nonlinear ill-posed problems”, Numer. Functional Analys. and Optimizat., 20:3–4 (1999), 317–332 | DOI | MR | Zbl