Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 8, pp. 1115-1128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_8_a2,
     author = {O. V. Karabanova and A. I. Kozlov and M. Yu. Kokurin},
     title = {Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1115--1128},
     year = {2002},
     volume = {42},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a2/}
}
TY  - JOUR
AU  - O. V. Karabanova
AU  - A. I. Kozlov
AU  - M. Yu. Kokurin
TI  - Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1115
EP  - 1128
VL  - 42
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a2/
LA  - ru
ID  - ZVMMF_2002_42_8_a2
ER  - 
%0 Journal Article
%A O. V. Karabanova
%A A. I. Kozlov
%A M. Yu. Kokurin
%T Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1115-1128
%V 42
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a2/
%G ru
%F ZVMMF_2002_42_8_a2
O. V. Karabanova; A. I. Kozlov; M. Yu. Kokurin. Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 8, pp. 1115-1128. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a2/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[2] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[3] Bakushinsky A., Goncharsky A., Ill-posed problems: theory and applications, Kluwer Acad. Publs, Dordrecht, 1994 | MR

[4] Bakushinskii A. B., “Iteratsionnye metody bez nasyscheniya dlya resheniya vyrozhdennykh nelineinykh operatornykh uravnenii”, Dokl. RAN, 344:1 (1995), 7–8 | MR

[5] Bakushinskii A. B., “Iterativnye metody dlya resheniya nelineinykh operatornykh uravnenii bez svoistva regulyarnosti”, Fundamentalnaya i prikl. matem., 3:4 (1997), 559–563

[6] Kokurin M. Yu., Yusupova N. A., “O nevyrozhdennykh otsenkakh skorosti skhodimosti iteratsionnykh metodov resheniya nekorrektnykh nelineinykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 40:6 (2000), 832–837 | MR | Zbl

[7] Bakushinskii A. B., Kokurin M. Yu., Yusupova N. A., “Neobkhodimye usloviya skhodimosti iteratsionnykh metodov resheniya nelineinykh operatornykh uravnenii bez svoistva regulyarnosti”, Zh. vychisl. matem. i matem. fiz., 40:7 (2000), 986–996 | MR

[8] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[9] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[11] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[12] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[13] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[14] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977 | MR | Zbl

[15] Bakushinskii A. B., “Iterativnye metody gradientnogo tipa dlya neregulyarnykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 1962–1966 | MR | Zbl

[16] Bakushinskii A. B., “Iterativnye metody gradientnogo tipa s proektirovaniem na fiksirovannoe podprostranstvo dlya resheniya neregulyarnykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1447–1450 | MR

[17] Kokurin M. Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, MarGU, Ioshkar-Ola, 1998

[18] Scherzer O., “An iterative multi level algorithm for solving nonlinear ill-posed problems”, Numer. Math., 80 (1998), 579–600 | DOI | MR | Zbl

[19] Deuflhard P., Engl H., Scherzer O., “A convergence analysis of iterative methods for the solution of nonlinear illposed problems under affinely invariant conditions”, Inverse Problems, 14 (1998), 1081–1106 | DOI | MR | Zbl

[20] Tautenhahn U., “On a general regularization scheme for nonlinear ill-posed problems: II. Regularization in Hilbert scales”, Inverse Problems, 14 (1998), 1607–1616 | DOI | MR | Zbl

[21] Kaltenbacher B., “Some Newton-type methods for the regularization of nonlinear ill-posed problems”, Inverse Problems, 13 (1997), 729–753 | DOI | MR | Zbl

[22] Alekseev B. M., Tikhomirov B. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[23] Ramm A. G., Smirnova A. B., “A numerical method for solving nonlinear ill-posed problems”, Numer. Functional Analys. and Optimizat., 20:3–4 (1999), 317–332 | DOI | MR | Zbl