Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 8, pp. 1217-1235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_8_a13,
     author = {I. A. Zagorodnov and R. P. Tarasov},
     title = {Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1217--1235},
     year = {2002},
     volume = {42},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a13/}
}
TY  - JOUR
AU  - I. A. Zagorodnov
AU  - R. P. Tarasov
TI  - Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1217
EP  - 1235
VL  - 42
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a13/
LA  - ru
ID  - ZVMMF_2002_42_8_a13
ER  - 
%0 Journal Article
%A I. A. Zagorodnov
%A R. P. Tarasov
%T Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1217-1235
%V 42
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a13/
%G ru
%F ZVMMF_2002_42_8_a13
I. A. Zagorodnov; R. P. Tarasov. Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 8, pp. 1217-1235. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a13/

[1] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Analys., 19:13 (1988), 613–626 | DOI | MR | Zbl

[2] Stephan E. P., “Boundary integral equations for screen problem in $R^3$”, Integral Equations and Operator Theory, 10 (1987), 236–257 | DOI | MR | Zbl

[3] Tarasov P. P., “Schetnaya ustoichivost granichnykh uravnenii I roda v zadachakh difraktsii vblizi rezonansov”, Zh. vychisl. matem. i matem. fiz., 39:6 (1999), 943–969 | MR | Zbl

[4] Zagorodnov I. A., Tarasov R. P., “Granichnye integralnye uravneniya I i II roda v chislennom reshenii zadach difraktsii na mnogogrannikakh vblizi rezonansov vnutrennei oblasti”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1517–1540 | MR | Zbl

[5] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[6] Tarasov R. P., “Difraktsiya na pravilnykh mnogogrannikakh”, Radiotekhn. i elektronika, 44:8 (1999), 920–932

[7] Zakharov E. V., Safronov S. I., Tarasov R. P., “Granichnye uravneniya s razryvno deistvuyuschei gruppoi diedra v kraevykh zadachakh s simmetriei vrascheniya”, Dokl. RAN, 367:6 (1999), 457–460 | Zbl

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[9] Serr Zh.-P., Lineinye predstavleniya konechnykh grupp, Mir, M., 1970 | Zbl

[10] Brown J. W., Wilton D. R., “Singular basis function and curvilinear triangles in the solution of the electric field integral equation”, IEEE Trans. Antennas Propagat., 47:2 (1999), 347–353 | DOI | MR | Zbl

[11] Zagorodnov I. A., Ilinskii A. S., Tarasov P. P., “Setochnye granichnye uravneniya na provodyaschikh poverkhnostyakh s simmetriyami i ikh chislennyi analiz v zadachakh difraktsii na sfere”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 756–782 | MR | Zbl

[12] Mauti J. R., Harrington R. F., “H-field, E-field and combined-field for conducting bodies of revolution”, Archiv für Elektronik und Übertragungstechnik, 32 (1978), 159–164