@article{ZVMMF_2002_42_8_a13,
author = {I. A. Zagorodnov and R. P. Tarasov},
title = {Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1217--1235},
year = {2002},
volume = {42},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a13/}
}
TY - JOUR AU - I. A. Zagorodnov AU - R. P. Tarasov TI - Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1217 EP - 1235 VL - 42 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a13/ LA - ru ID - ZVMMF_2002_42_8_a13 ER -
%0 Journal Article %A I. A. Zagorodnov %A R. P. Tarasov %T Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1217-1235 %V 42 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a13/ %G ru %F ZVMMF_2002_42_8_a13
I. A. Zagorodnov; R. P. Tarasov. Computational schemes for the problem of acoustic excitation of an axially symmetric domain with a two-component boundary through a hole on the boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 8, pp. 1217-1235. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a13/
[1] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Analys., 19:13 (1988), 613–626 | DOI | MR | Zbl
[2] Stephan E. P., “Boundary integral equations for screen problem in $R^3$”, Integral Equations and Operator Theory, 10 (1987), 236–257 | DOI | MR | Zbl
[3] Tarasov P. P., “Schetnaya ustoichivost granichnykh uravnenii I roda v zadachakh difraktsii vblizi rezonansov”, Zh. vychisl. matem. i matem. fiz., 39:6 (1999), 943–969 | MR | Zbl
[4] Zagorodnov I. A., Tarasov R. P., “Granichnye integralnye uravneniya I i II roda v chislennom reshenii zadach difraktsii na mnogogrannikakh vblizi rezonansov vnutrennei oblasti”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1517–1540 | MR | Zbl
[5] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR
[6] Tarasov R. P., “Difraktsiya na pravilnykh mnogogrannikakh”, Radiotekhn. i elektronika, 44:8 (1999), 920–932
[7] Zakharov E. V., Safronov S. I., Tarasov R. P., “Granichnye uravneniya s razryvno deistvuyuschei gruppoi diedra v kraevykh zadachakh s simmetriei vrascheniya”, Dokl. RAN, 367:6 (1999), 457–460 | Zbl
[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR
[9] Serr Zh.-P., Lineinye predstavleniya konechnykh grupp, Mir, M., 1970 | Zbl
[10] Brown J. W., Wilton D. R., “Singular basis function and curvilinear triangles in the solution of the electric field integral equation”, IEEE Trans. Antennas Propagat., 47:2 (1999), 347–353 | DOI | MR | Zbl
[11] Zagorodnov I. A., Ilinskii A. S., Tarasov P. P., “Setochnye granichnye uravneniya na provodyaschikh poverkhnostyakh s simmetriyami i ikh chislennyi analiz v zadachakh difraktsii na sfere”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 756–782 | MR | Zbl
[12] Mauti J. R., Harrington R. F., “H-field, E-field and combined-field for conducting bodies of revolution”, Archiv für Elektronik und Übertragungstechnik, 32 (1978), 159–164