@article{ZVMMF_2002_42_8_a12,
author = {E. A. Volkov and A. K. Kornoukhov},
title = {Solving the torsion problem for an $L$-section rod by the block method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1207--1216},
year = {2002},
volume = {42},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a12/}
}
TY - JOUR AU - E. A. Volkov AU - A. K. Kornoukhov TI - Solving the torsion problem for an $L$-section rod by the block method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1207 EP - 1216 VL - 42 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a12/ LA - ru ID - ZVMMF_2002_42_8_a12 ER -
%0 Journal Article %A E. A. Volkov %A A. K. Kornoukhov %T Solving the torsion problem for an $L$-section rod by the block method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1207-1216 %V 42 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a12/ %G ru %F ZVMMF_2002_42_8_a12
E. A. Volkov; A. K. Kornoukhov. Solving the torsion problem for an $L$-section rod by the block method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 8, pp. 1207-1216. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_8_a12/
[1] Volkov E. A., “Eksponentsialno skhodyaschiisya metod resheniya uravneniya Laplasa na mnogougolnikakh”, Matem. sb., 109:3 (1979), 323–354 | MR | Zbl
[2] Volkov E. A., Block method for solving the Laplace equation and for constructing conformal mappings, CRC Press Inc., Boca Raton (Florida), 1994 | MR | Zbl
[3] Volkov E. A., “Razvitie blochnogo metoda resheniya uravneniya Laplasa dlya konechnykh i beskonechnykh krugovykh mnogougolnikov”, Tr. MIAN SSSR, 187, M., 1989, 39–68
[4] Volkov E. A., “O bystrom blochnom metode resheniya uravneniya Laplasa na mnogougolnikakh pri nelokalnykh granichnykh usloviyakh”, Dokl. RAN, 342:1 (1995), 11–14 | MR | Zbl
[5] Volkov E. A., “Priblizhennoe konformnoe otobrazhenie blochnym metodom kruga s mnogougolnym otverstiem na koltso”, Zh. vychisl. matem. i matem. fiz., 28:6 (1988), 835–841 | MR
[6] Volkov E. A., “Vysokotochnye prakticheskie rezultaty konformnykh otobrazhenii blochnym metodom odnosvyaznykh i dvusvyaznykh oblastei”, Tr. MIAN SSSR, 181, M., 1988, 40–69 | MR | Zbl
[7] Volkov E. A., Kornoukhov A. K., Yakovleva E. A., “Eksperimentalnoe issledovanie blochnogo metoda resheniya uravneniya Laplasa na mnogougolnikakh”, Zh. vychisl. matem. i matem. fiz., 38:9 (1998), 1544–1552 | MR | Zbl
[8] Volkov E. A., Kornoukhov A. K., “Priblizhennoe konformnoe otobrazhenie blochnym metodom trapetsii na pryamougolnik i ego obraschenie”, Zh. vychisl. matem. i matem. fiz., 39:7 (1999), 1142–1150 | MR | Zbl
[9] Trefftz E., “Über die Wirkung einer Abrundung auf die Torsionspannungen in der inneren Ecke eines Winkeleisens”, Z. angew. Math. und Mech., 2:4 (1922), 263–267 | DOI | Zbl
[10] Vlasov V. I., Skorokhodov S. L., “O razvitii metoda Trefftsa”, Dokl. RAN, 337:6 (1994), 713–717 | MR | Zbl
[11] Skorokhodov S. L., Vlasov V. I., “A generalization and development of the Trefftz's method”, Z. angew. Math. und Mech., 76, Suppl. 1 (1996), 547–548 | MR | Zbl
[12] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs RAN, M., 1987 | MR
[13] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR
[14] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti. Osnovnye uravneniya ploskoi teorii uprugosti. Kruchenie i izgib, Nauka, M., 1966
[15] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN SSSR, 77, M., 1965, 113–142 | Zbl