Global solvability of an initial-boundary value problem for a system of semilinear equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 7, pp. 1039-1050 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_7_a9,
     author = {M. O. Korpusov},
     title = {Global solvability of an initial-boundary value problem for a system of semilinear equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1039--1050},
     year = {2002},
     volume = {42},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a9/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Global solvability of an initial-boundary value problem for a system of semilinear equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1039
EP  - 1050
VL  - 42
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a9/
LA  - ru
ID  - ZVMMF_2002_42_7_a9
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Global solvability of an initial-boundary value problem for a system of semilinear equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1039-1050
%V 42
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a9/
%G ru
%F ZVMMF_2002_42_7_a9
M. O. Korpusov. Global solvability of an initial-boundary value problem for a system of semilinear equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 7, pp. 1039-1050. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a9/

[1] Fedosov V. N., “Nizkochastotnye fluktuatsii i relaksatsiya v poluprovodnikovom segnetoelektrike”, Fizika i tekhn. poluprovodnikov, 17:5 (1983), 941–944

[2] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR

[3] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[4] Naumkin P. I., Shishmarev I. A., “Asimptotika pri $t\to+\infty$ reshenii nelineinykh uravnenii s nemalymi nachalnymi vozmuscheniyami”, Matem. zametki, 59:6 (1996), 855–864 | MR | Zbl

[5] Korpusov M. O., “Globalnaya razreshimost i razrushenie za konechnoe vremya reshenii nelineinykh uravnenii psevdoparabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 42:6 (2002), 849 | MR | Zbl

[6] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[7] Postnikov M. M., Lektsii po geometrii, Semestr 2. Lineinaya algebra, Nauka, M., 1986 | MR | Zbl

[8] Zorin V. A., Matematicheskii analiz, Ch. 1, Nauka, M., 1981

[9] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR

[10] Dyachenko M. I., Ulyanov P. L., Mera i integral, Faktorial, M., 1998

[11] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[12] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR