A method for approximate analysis of a linear evolutionary equation in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 7, pp. 937-950 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_7_a2,
     author = {A. V. Selin},
     title = {A method for approximate analysis of a linear evolutionary equation in a {Hilbert} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {937--950},
     year = {2002},
     volume = {42},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a2/}
}
TY  - JOUR
AU  - A. V. Selin
TI  - A method for approximate analysis of a linear evolutionary equation in a Hilbert space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 937
EP  - 950
VL  - 42
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a2/
LA  - ru
ID  - ZVMMF_2002_42_7_a2
ER  - 
%0 Journal Article
%A A. V. Selin
%T A method for approximate analysis of a linear evolutionary equation in a Hilbert space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 937-950
%V 42
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a2/
%G ru
%F ZVMMF_2002_42_7_a2
A. V. Selin. A method for approximate analysis of a linear evolutionary equation in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 7, pp. 937-950. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a2/

[1] Butcher J. C., “Implicit Rimge–Kutta processes”, Math. Comput., 18 (1964), 50–64 | DOI | MR | Zbl

[2] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978 | MR

[4] Brenner P., Thomée V., “On rational approximation of semigroups”, SIAM J. Numer. Analys., 16 (1979), 683–694 | DOI | MR | Zbl

[5] Ehle B. L., “$A$-stable methods and Padé approximations to the exponential”, SIAM J. Numer. Analys., 4 (1973), 671–680 | MR | Zbl

[6] Nørsett S. P., “One step methods of Hermite type for numerical integration of stiff systems”, BIT, 14 (1974), 63–77 | DOI | MR

[7] Kato T., “Integration of the equation of evolution in a Banach space”, J. Math. Soc. Japan., 5 (1953), 208–234 | DOI | MR | Zbl

[8] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[9] Magnus W., “On the exponential solution of differential equations for a linear operator”, Communs Pure and Appl. Math., 7 (1954), 649–673 | DOI | MR | Zbl

[10] Agrachev A. A., Gamkrelidze R. V., “Eksponentsialnoe predstavlenie potokov i khronologicheskoe ischislenie”, Matem. sb., 107 (1978), 467–532 | MR | Zbl

[11] Vinokurov V. A., “Metod chislennogo resheniya lineinykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 22:5 (1982), 1080–1093 | MR | Zbl

[12] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[13] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR