Integral equations with logarithmic singularities in kernels of two-dimensional problems for anisotropic bodies with defects
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 7, pp. 1067-1079 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_7_a11,
     author = {A. A. Gusenkova},
     title = {Integral equations with logarithmic singularities in kernels of two-dimensional problems for anisotropic bodies with defects},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1067--1079},
     year = {2002},
     volume = {42},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a11/}
}
TY  - JOUR
AU  - A. A. Gusenkova
TI  - Integral equations with logarithmic singularities in kernels of two-dimensional problems for anisotropic bodies with defects
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1067
EP  - 1079
VL  - 42
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a11/
LA  - ru
ID  - ZVMMF_2002_42_7_a11
ER  - 
%0 Journal Article
%A A. A. Gusenkova
%T Integral equations with logarithmic singularities in kernels of two-dimensional problems for anisotropic bodies with defects
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1067-1079
%V 42
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a11/
%G ru
%F ZVMMF_2002_42_7_a11
A. A. Gusenkova. Integral equations with logarithmic singularities in kernels of two-dimensional problems for anisotropic bodies with defects. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 7, pp. 1067-1079. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a11/

[1] Lekhnitskii S. G., Anizotropnye plastinki, Gostekhteorizdat, M.-L., 1947

[2] Chibrikova L. I., Lin Vei, O primenenii metoda simmetrii k resheniyu osnovnykh zadach ploskoi teorii uprugosti v sluchae anizotropnoi sredy, Preprint 98-1, Izd-vo Kazansk. matem. ob-va, Kazan, 1998, 32 pp.

[3] Gusenkova A. A., Pleschinskii N. B., “Integralnye uravneniya s logarifmicheskimi osobennostyami v yadrakh granichnykh zadach ploskoi teorii uprugosti dlya oblastei s defektom”, Prikl. matem. i mekhan., 64:3 (2000), 454–461 | MR | Zbl

[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[5] Pleschinskii N. B., Gusenkova A. A., “Kompleksnye potentsialy s logarifmicheskimi osobennostyami v yadrakh dlya uprugikh tel s defektom vdol gladkoi dugi”, Izv. vuzov. Matematika, 2000, no. 10, 57–67

[6] Savruk M. P., Dvumernye zadachi uprugosti dlya tel s treschinami, Nauk. dumka, Kiev, 1981 | MR | Zbl

[7] Mazya V. G., “Granichnye integralnye uravneniya”, Itogi nauki i tekhn. Sovr. probl. matem. Fundamentalnye napravleniya, 27, VINITI, M., 1988, 131–228 | MR

[8] Pleschinskii N. B., Prilozheniya teorii integralnykh uravnenii s logarifmicheskimi i stepennymi yadrami, Kazansk. un-t, Kazan, 1987 | MR

[9] Pleshchinskii N. B., “Some classes of singular integral equations solvable in a closed form and their applications”, Pitman Res. Notes in Math. Ser. Longman Scient. Techn., 256, 1991, 246–256 | MR

[10] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda. Chislennyi analiz, Kazansk. un-t, Kazan, 1994 | MR

[11] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR | Zbl

[12] Mikhlin S. G., “Ploskaya deformatsiya v anizotropnoi srede”, Tr. Seismol. in-ta AN SSSR, 76, M., 1936, 1–19

[13] Savin G. N., “Osnovnaya ploskaya staticheskaya zadacha teorii uprugosti dlya anizotropnoi sredy”, Tr. In-ta stroit. mekhan. AN USSR, 32, Kiev, 1938, 1–55

[14] Sherman D. I., “Ploskaya zadacha teorii uprugosti dlya anizotropnoi sredy”, Tr. Seismol. in-ta AN SSSR, 86, M., 1938, 51–78