@article{ZVMMF_2002_42_7_a10,
author = {R. Z. Dautov and E. M. Karchevskii},
title = {Solution of the vector problem of the natural waves of cylindrical dielectric waveguides based on a nonlocal boundary condition},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1051--1066},
year = {2002},
volume = {42},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a10/}
}
TY - JOUR AU - R. Z. Dautov AU - E. M. Karchevskii TI - Solution of the vector problem of the natural waves of cylindrical dielectric waveguides based on a nonlocal boundary condition JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1051 EP - 1066 VL - 42 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a10/ LA - ru ID - ZVMMF_2002_42_7_a10 ER -
%0 Journal Article %A R. Z. Dautov %A E. M. Karchevskii %T Solution of the vector problem of the natural waves of cylindrical dielectric waveguides based on a nonlocal boundary condition %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1051-1066 %V 42 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a10/ %G ru %F ZVMMF_2002_42_7_a10
R. Z. Dautov; E. M. Karchevskii. Solution of the vector problem of the natural waves of cylindrical dielectric waveguides based on a nonlocal boundary condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 7, pp. 1051-1066. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_7_a10/
[1] Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Shatrov A. D., “Sobstvennye volny dielektricheskikh volnovodov slozhnogo secheniya (obzor)”, Radiotekhn. i elektronika, 24:7 (1979), 1245–1263 | MR
[2] Snaider A., Lav Dzh., Teoriya opticheskikh volnovodov, Radio i svyaz, M., 1987
[3] Kleev A. I., Manenkov A. B., Rozhnev A. G., “Chislennye metody rascheta dielektricheskikh volnovodov (volokonnykh svetovodov). Universalnye metodiki (obzor)”, Radiotekhn. i elektronika, 38:11 (1993), 1938–1968
[4] Karchevskii E. M., “Ob opredelenii postoyannykh rasprostraneniya sobstvennykh voln dielektricheskikh volnovodov metodami teorii potentsiala”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 136–140 | MR
[5] Karchevskii E. M., “Issledovanie chislennogo metoda resheniya spektralnoi zadachi teorii dielektricheskikh volnovodov”, Izv. vuzov. Matematika, 1999, no. 1, 10–17 | MR
[6] Karchevskii E. M., “Issledovanie zadachi o sobstvennykh volnakh tsilindricheskikh dielektricheskikh volnovodov”, Differents. ur-niya, 36:7 (2000), 998–999 | MR
[7] Givoli D., “Nonreflecting boundary conditions”, J. Comput. Phys., 94 (1991), 1–29, (Review article) | DOI | MR | Zbl
[8] Sveshnikov A. G., “Difraktsiya na zvezdnom tele”, Vychisl. metody i programmirovanie, 13, Izd-vo MGU, M., 1969, 145–151
[9] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991
[10] Givoli D., Keller J. B., “Exact non-reflecting boundary conditions”, J. Comput. Phys., 82 (1989), 172–192 | DOI | MR | Zbl
[11] Brezzi F., Johnson C., “On the coupling of boundary integral and finite element methods”, Estratto da Colcolo, 16:11 (1979) | MR | Zbl
[12] MacCamy, Marin S. P., “A finite element method for exterior interface problems”, Internal. J. Math. Math. Sci., 3 (1980), 311–350 | DOI | MR | Zbl
[13] Goldstein C. I., “A finite element method for solving Helmholtz type equations in wave guides and other unbounded domains”, Math. Comput., 39 (1982), 309–324 | DOI | MR | Zbl
[14] Kuznetsov S. B., “Kombinirovanie metoda konechnykh elementov s metodom granichnykh integralnykh uravnenii”, Variatsionno-raznostnye metody v zadachakh chisl. analiza, VTs SO AN SSSR, Novosibirsk, 1987
[15] Gregus M., Khoromsky B. N., Mazurkevich G. E., Zhidkov E. P., Combined algorithms in nonlinear problems of magnetostatics, Communication JINR, E11-88-481, 1988 | Zbl
[16] Dautov R. Z., Karchevskii E. M., “Ob odnoi spektralnoi zadache teorii dielektricheskikh volnovodov”, Zh. vychisl. matem. i matem. fiz., 39:8 (1999), 1348–1355 | MR | Zbl
[17] Dautov R. Z., Karchevskii E. M., “Suschestvovanie i svoistva reshenii spektralnoi zadachi teorii dielektricheskikh volnovodov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1250–1263 | MR | Zbl
[18] Bamberger A., Bonnet A. S., “Mathematical analysis of the guided modes of an optical fiber”, SIAM J. Math. Analys., 21:6 (1990), 1487–1510 | DOI | MR | Zbl
[19] Bonnet-Ben Dhia A. S., Joli P., “Mathematical analysis of guided water waves”, SIAM J. Appl. Math., 53:6 (1993), 1507–1550 | DOI | MR | Zbl
[20] Sukhinin S. V., “Sobstvennye kolebaniya okolo plastiny v kanale”, Prikl. mekhan. i tekhn. fiz., 39:2 (1998), 78–90 | MR | Zbl
[21] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[22] Yanke E., Emde F., Lesh F., Spetsialnye funktsii, Nauka, M., 1968
[23] Lions Zh. L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR