A fourth-order accurate composite grid method for solving Laplace's boundary value problems with singularities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 6, pp. 867-884 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_6_a9,
     author = {A. A. Dosiev},
     title = {A fourth-order accurate composite grid method for solving {Laplace's} boundary value problems with singularities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {867--884},
     year = {2002},
     volume = {42},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a9/}
}
TY  - JOUR
AU  - A. A. Dosiev
TI  - A fourth-order accurate composite grid method for solving Laplace's boundary value problems with singularities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 867
EP  - 884
VL  - 42
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a9/
LA  - en
ID  - ZVMMF_2002_42_6_a9
ER  - 
%0 Journal Article
%A A. A. Dosiev
%T A fourth-order accurate composite grid method for solving Laplace's boundary value problems with singularities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 867-884
%V 42
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a9/
%G en
%F ZVMMF_2002_42_6_a9
A. A. Dosiev. A fourth-order accurate composite grid method for solving Laplace's boundary value problems with singularities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 6, pp. 867-884. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a9/

[1] Motz H., “The treatment of singularities of partial differential equations by relaxation methods”, Quart. Appl. Math., 4 (1946), 371–377 | MR

[2] Volkov E. A., “A difference-analytic method of calculating the potential field on polygons”, Soviet Math. Dokl., 18:6 (1977), 1531–1535 | Zbl

[3] Fryazinov I. V., “Difference schemes for Laplace's equation in stepped domains”, U.S.S.R. Comput. Math. and Math. Phys., 18:5 (1978), 95–111 | DOI | MR

[4] Fix G., “Higher order Rayleigh–Ritz approximations”, J. Math. Mech., 18 (1969), 645–658 | MR

[5] Blum H., Dobrowolski M., “On finite element methods for elliptic equations on domains with corners”, Computing, 28 (1982), 53–63 | DOI | MR | Zbl

[6] Soviet Math. Dokl., 7 (1966) | MR | Zbl

[7] Volkov E. A., “Method of composite meshes for finite and infinite domain with a piecewise-smooth boundary”, Trudy Mat. Inst. Steklov, 96, 1968, 117–148 | Zbl

[8] Volkov E. A., “On the method of composite meshes for Laplace's equation on polygons”, Trudy Mat. Inst. Steklov, 140, 1976, 68–102 | MR | Zbl

[9] Thatcher R. W., “The use of infinite grid refinement at singularities in the solution of Laplace's equation”, Numer. Math., 25 (1976), 163–178 | DOI | MR | Zbl

[10] Babuska I., Guo B. Q., “The $h$-$p$ version of the finite element method for domains with curved boundaries”, SIAM J. Numer. Analys., 25:4 (1988), 837–861 | DOI | MR | Zbl

[11] Babuska I., Guo B. Q., “Approximation properties of the $h$-$p$ version of the finite element method”, Comput. Methods Appl. Mech. Engrg., 133 (1996), 319–346 | DOI | MR | Zbl

[12] Guo B., Cao W., “Additive Schwarz methods for the $h$-$p$ version of the finite element method in two dimensions”, SIAM J. Sci. Comput., 18:5 (1997), 1267–1288 | DOI | MR | Zbl

[13] Fix G. J., Gulati S., Wakoff G. I., “On the use of singular functions with finite element approximations”, J. Comput. Phys., 13 (1973), 209–228 | DOI | MR | Zbl

[14] Marchuk G. I., Agoshkov V. I., Introduction to projection-nets methods, Nauka, Moscow, 1981 (in Russian) | MR

[15] Bakhvalov N. S., Zidkov N. P., Kobelkov G. M., Numerical Methods, Nauka, Moscow, 1987 (in Russian) | MR | Zbl

[16] Bakhvalov N. S., Orekhov M. Yu., “Fast methods of solving Poisson's Equation”, Comput. Maths Math. Phys., 22:6 (1982), 107–114 | DOI | MR | Zbl

[17] Romanova S. E., “An economic method for the approximate solution of the Laplace's difference equation on rectangular regions”, U.S.S.R. Comput. Math. and Math. Phys., 23:3 (1983), 92–101 | DOI | MR | Zbl

[18] Volkov E. A., “An asymptotically fast approximate method of finding a solution of the difference Laplace equation on mesh segments”, Proc. Steklov Inst. Math., 4, 1987, 71–92

[19] Babuska I., Rosenzweig M. B., “A finite element scheme for domains with corner”, Numer. Math., 20 (1972), 1–21 | DOI | MR | Zbl

[20] Zenger C., Gietl H., “Improved difference schemes for the Dirichlet problem of Poisson's equation in the neighborhood of corners”, Numer. Math., 30 (1978), 315–332 | DOI | MR | Zbl

[21] Andreev V. B., “Asymptotic solution of Laplace's grid equation in a corner”, Dokl. Akad. Nauk SSSR, 244 (1979), 1289–1293 | MR | Zbl

[22] Wigley N. M., “An efficient method for subtracting off singularities at corners for Laplace's equation”, J. Comput. Phys., 78 (1988), 368–376 | DOI | MR

[23] Dosiyev A. A., “A block-grid method for increasing accuracy in the solution of the Laplace equation on polygons”, Russian Acad. Sci. Dokl. Math., 45:2 (1992), 396–399 | MR

[24] Lucas T. R., Oh H. S., “The method of auxiliary mapping for the finite element solutions of elliptic problems containing singularities”, J. Comput. Phys., 108 (1993), 327–342 | DOI | MR | Zbl

[25] Volkov E. A., Block method for solving the Laplace equation and constructing conformal mappings, CRC Press, USA, 1994 | MR | Zbl

[26] Dosiyev A. A., “A block-grid method of increased accuracy for solving Dirichlet's problem for Laplace's equation on polygons”, Comput. Maths and Math. Phys., 34:5 (1994), 591–604 | MR

[27] Wu X., Han H., “A finite-element method for Laplace- and Helmholtz-type boundary value problems with singularities”, SIAM J. Numer. Analys., 34:3 (1997), 1037–1050 | DOI | MR | Zbl

[28] Li Z. C., Mathon R., Sermer P., “Boundary methods for solving elliptic problems with singularities and interfaces”, SIAM J. Numer. Analys., 24:3 (1987), 487–498 | DOI | MR | Zbl

[29] Volkov E. A., “Effective error estimates for grid method solutions of boundary-value problems for Laplace's and Poisson's equations on rectangle and certain triangles”, Tr. Mat. Inst. Akad. Nauk SSSR, 74, 1966, 55–85 | MR | Zbl

[30] Volkov E. A., “On differentiability properties of solutions of boundary value problems for the Laplace and Poisson equations on a rectangle”, Proc. Steklov Inst. Math., 77, 1965, 101–126 | MR | Zbl

[31] Bakhvalov N. S., “Numerical solution of the Dirichlet problem for Laplace's equation”, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him., 5 (1959), 171–195 (Russian) | MR

[32] Volkov E. A., “The differential properties of the solutions of Laplace's equation, and the errors in the method of nets with boundary values in $C_2$ and $C{1,1}$”, Comput. Math. and Math. Phys., 9:3 (1969), 97–112 | DOI | MR

[33] Volkov E. A., “On differentiability properties of solutions of boundary value problems for the Laplace's equation on polygons”, Tr. Mat. Inst. Akad. Nauk SSSR, 77, 1965, 113–142 | MR | Zbl

[34] Wasow W., “On the truncation error in the solution of Laplace's equation by finite differences”, J. Res. Nat. Bur. Standards., 48 (1952), 345–348 | MR