Global solvability of pseudoparabolic nonlinear equations and blow-up of their solutions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 6, pp. 849-866 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_6_a8,
     author = {M. O. Korpusov},
     title = {Global solvability of pseudoparabolic nonlinear equations and blow-up of their solutions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {849--866},
     year = {2002},
     volume = {42},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a8/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Global solvability of pseudoparabolic nonlinear equations and blow-up of their solutions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 849
EP  - 866
VL  - 42
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a8/
LA  - ru
ID  - ZVMMF_2002_42_6_a8
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Global solvability of pseudoparabolic nonlinear equations and blow-up of their solutions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 849-866
%V 42
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a8/
%G ru
%F ZVMMF_2002_42_6_a8
M. O. Korpusov. Global solvability of pseudoparabolic nonlinear equations and blow-up of their solutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 6, pp. 849-866. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a8/

[1] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl

[2] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1967

[3] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “O kvazistatsionarnykh protsessakh v provodyaschie sredakh bez dispersii”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1237–1249 | MR | Zbl

[4] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravnenii tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Matem. zametki, 65:1 (1999), 70 | MR | Zbl

[5] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, Uspekhi matem. nauk, 49:4 (1994), 47–74 | MR | Zbl

[6] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[7] Gladkov A. L., “Edinstvennost resheniya zadachi Koshi dlya nekotorykh kvazilineinykh psevdoparabolicheskikh uravnenii”, Matem. zametki, 60:3 (1996), 356 | MR | Zbl

[8] Korpusov M. O., Sveshnikov A. G., “O razrushenii za konechnoe vremya resheniya nachalno-kraevoi zadachi dlya polulineinogo uravneniya sostavnogo tipa”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1647–1654 | MR | Zbl

[9] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[10] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Ration. Mech. and Analys., 51 (1973), 371–386 | MR | Zbl

[11] Gao H., Ma T. F., “Global solutions for a nonlinear wave equation with the $p$-laplacian operator”, Elctronic J. Qualitativ Theory Differenc. Equat., 11 (1999), 1–13 | MR

[12] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR

[13] Pletner Yu. D., “Fundamentalnye resheniya operatorov tipa Soboleva i nekotorye nachalno-kraevye zadachi”, Zh. vychisl. matem. i matem. fiz., 32:12 (1992), 1885–1899 | MR | Zbl

[14] Pyatkov S. G., “Kraevye zadachi dlya nekotorykh uravnenii i sistem, voznikayuschikh v teorii elektricheskikh tsepei”, Aktualnye voprosy sovrem. matem., 1995, no. 1, 121–133 | Zbl

[15] Guowang C., Shubin W., “Existence and non-existence of global solutions for nonlinear hyperbolic equations of higher order”, Comment. Math. Univ. Carolinae, 36:3 (1995), 475–487 | MR | Zbl

[16] Korpusov M. O., “K voprosu o globalnoi razreshimosti nachalno-kraevoi zadachi dlya nelineinogo uravneniya sostavnogo tipa”, Zh. vychisl. matem. i matem. fiz., 41:6 (2001), 959–964 | MR | Zbl

[17] Lionc Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[18] Maslennikova V. N., Differentsialnye uravneniya v chastnykh proizvodnykh, RUDN, M., 1997

[19] Tikhonov A. N., Vasileva A. B., Sveshnikov A. G., Differentsialnye uravneniya, Nauka, M., 1985 | MR

[20] Demidovich V. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[21] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[22] Rossi J. D., “The blow-up rate for a semilinear parabolic equation with a nonlinear boundary condition”, Acta. Math. Univ. Comenianae, 67:2 (1998), 343–350 | MR | Zbl

[23] Amann H., Fila M., “A Fujita-type theorem for the laplace equation with a dynamical boundary condition”, Acta. Math. Univ. Comenianae, 66:2 (1997), 321–328 | MR | Zbl

[24] Nakao M., “A difference inequality and its applications to nonlinear evolution equations”, J. Math. Soc. Japan, 30 (1978), 747–762 | DOI | MR | Zbl

[25] Ilin B. A., Poznyak E. G., Osnovy matematicheskogo analiza, Ch. 1, Nauka, M., 1971

[26] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR