The canonical matrix of the vector Riemann–Hilbert boundary value problem and its application to boundary value problems in kinetic theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 6, pp. 885-895 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_6_a10,
     author = {A. V. Latyshev and V. V. Sushkov},
     title = {The canonical matrix of the vector {Riemann{\textendash}Hilbert} boundary value problem and its application to boundary value problems in kinetic theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {885--895},
     year = {2002},
     volume = {42},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a10/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - V. V. Sushkov
TI  - The canonical matrix of the vector Riemann–Hilbert boundary value problem and its application to boundary value problems in kinetic theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 885
EP  - 895
VL  - 42
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a10/
LA  - ru
ID  - ZVMMF_2002_42_6_a10
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A V. V. Sushkov
%T The canonical matrix of the vector Riemann–Hilbert boundary value problem and its application to boundary value problems in kinetic theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 885-895
%V 42
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a10/
%G ru
%F ZVMMF_2002_42_6_a10
A. V. Latyshev; V. V. Sushkov. The canonical matrix of the vector Riemann–Hilbert boundary value problem and its application to boundary value problems in kinetic theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 6, pp. 885-895. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_6_a10/

[1] Latyshev A. V., “Primenenie metoda Keiza k resheniyu linearizovannogo kineticheskogo BGK-uravneniya v zadache o temperaturnom skachke”, Prikl. matem. i mekhan., 54:4 (1990), 581–586 | MR | Zbl

[2] Latyshev A. V., Yushkanov A. A., “Tochnoe reshenie uravneniya Boltsmana s operatorom stolknovenii v forme BGK v zadache o slabom isparenii”, Matem. modelirovanie, 1:6 (1990), 53–64 | MR

[3] Latyshev A. V., Yushkanov A. A., “The temperature jump and slow evaporation in a polyatomic gas”, Math. Models of Non-Linear Excitations, Transfer, Dynamics and Control in Condensed Systems, and Other Media, Kluwer Acad. / Plenum Publs, New York, 1999, 3–16

[4] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[5] Smoluchowski V., “Über Wärmeleitung in verdünnten Gasen”, Ann. Phys. Chem., 64 (1898), 101–130

[6] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[7] Kriese J. T., Chang T. S., Siewert C. E., “Elementary solutions of coupled model equatins in the kinetic theory of gases”, Internat J. Engng Sci., 12:6 (1974), 441–470 | DOI | MR | Zbl

[8] Siewert C. E., Kelley C. T., “An analytical solutions to a matrix Riemann–Hilbert problem”, J. Appl. Math. Phys., 31:2 (1980), 344–351 | MR | Zbl

[9] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[10] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[11] Germogenova T. A., O polnote sistemy sobstvennykh funktsii kharakteristicheskogo uravneniya teorii perenosa, Preprint No 103, IPMatem. AN SSSR, M., 1976, 55 pp.