A functional difference method for solving left-definite Sturm–Liouville problems with an eigenparameter in the boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 5, pp. 676-689 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_5_a6,
     author = {B. I. Bandyrskii and \={I}. \={I}. Lazurchak and V. L. Makarov},
     title = {A functional difference method for solving left-definite {Sturm{\textendash}Liouville} problems with an eigenparameter in the boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {676--689},
     year = {2002},
     volume = {42},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a6/}
}
TY  - JOUR
AU  - B. I. Bandyrskii
AU  - Ī. Ī. Lazurchak
AU  - V. L. Makarov
TI  - A functional difference method for solving left-definite Sturm–Liouville problems with an eigenparameter in the boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 676
EP  - 689
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a6/
LA  - ru
ID  - ZVMMF_2002_42_5_a6
ER  - 
%0 Journal Article
%A B. I. Bandyrskii
%A Ī. Ī. Lazurchak
%A V. L. Makarov
%T A functional difference method for solving left-definite Sturm–Liouville problems with an eigenparameter in the boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 676-689
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a6/
%G ru
%F ZVMMF_2002_42_5_a6
B. I. Bandyrskii; Ī. Ī. Lazurchak; V. L. Makarov. A functional difference method for solving left-definite Sturm–Liouville problems with an eigenparameter in the boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 5, pp. 676-689. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a6/

[1] Binding P. A., Browne P. J., “Left definite Sturm-Liouville problems with eigen parameter dependent on boundary conditions”, Different. Integr. Equation., 12:2 (1999), 167–182 | MR | Zbl

[2] Binding P. A., Browne P. J., Seddighi K., “Sturm–Liouville problems with eigen parameter dependent on boundary conditions”, Proc. Edinburgh Math. Soc., 37 (1993), 57–72 | DOI | MR

[3] Binding P. A., Browne P. J., “Application of two-parameter eigencurves to Sturm–Liouville problems with eigenparameter-dependent on boundary conditions”, Proc. Roy. Soc. Edinburgh. A, 125 (1995), 1205–1218 | MR | Zbl

[4] Ince E. L., Ordinary differential equations doker, New York, 1956

[5] Makarov V. L., “On a functional difference method of arbitrary order of precision for solving the Sturm–Liouville problem with piecewise smooth coefficients”, Soviet Math. Dokl., 44:2 (1992), 391–396 | MR

[6] Makarov V. L., Ukhanev O. L., “FD-method for Sturm–Liouville problems. Exponential rate of convergenze”, Appl. Math. and Inform., 2, Univ. Press, Tbilisy, 1997, 1–19 | MR

[7] Bandyrskii B. I., Makarov V. L., Ukhanev O. L., “Dostatochnye usloviya skhodimosti ne klassicheskikh asimptoticheskikh razlozhenii dlya zadachi Shturma–Liuvillya s periodicheskimi usloviyami”, Differents. ur-niya, 1:3 (1999), 1–12 | MR

[8] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR

[9] Wolfram S., Mathematical a system for doing mathematics by computer, Addison Wesley, 1988 | Zbl

[10] Dyakonov V. P., Matematicheskaya sistema Maple V R3/R4/R5, “Solon”, M., 1998