High-order accurate three-point difference schemes for systems of second-order ordinary differential equations with a monotone operator
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 5, pp. 754-768 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_5_a13,
     author = {M. V. Kutniv},
     title = {High-order accurate three-point difference schemes for systems of second-order ordinary differential equations with a monotone operator},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {754--768},
     year = {2002},
     volume = {42},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a13/}
}
TY  - JOUR
AU  - M. V. Kutniv
TI  - High-order accurate three-point difference schemes for systems of second-order ordinary differential equations with a monotone operator
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 754
EP  - 768
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a13/
LA  - ru
ID  - ZVMMF_2002_42_5_a13
ER  - 
%0 Journal Article
%A M. V. Kutniv
%T High-order accurate three-point difference schemes for systems of second-order ordinary differential equations with a monotone operator
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 754-768
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a13/
%G ru
%F ZVMMF_2002_42_5_a13
M. V. Kutniv. High-order accurate three-point difference schemes for systems of second-order ordinary differential equations with a monotone operator. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 5, pp. 754-768. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a13/

[1] Makarov V. L., Samarskii A. A., “Tochnye trekhtochechnye raznostnye skhemy dlya nelineinykh obyknovennykh differentsialnykh uravnenii 2-go poryadka i ikh realizatsiya”, Dokl. AN SSSR, 312:4 (1990), 795–800 | MR | Zbl

[2] Kutniv M. V., Makarov V. L., Samarskii A. A., “Tochnye trekhtochechnye raznostnye skhemy dlya nelineinykh obyknovennykh differentsialnykh uravnenii 2-go poryadka i ikh realizatsiya”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 45–60 | MR | Zbl

[3] Kutniv M. V., “Tochnye trekhtochechnye raznostnye skhemy dlya monotonnykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka i ikh realizatsiya”, Zh. vychisl. matem. i matem. fiz., 40:3 (2000), 387–401 | MR | Zbl

[4] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[5] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Nauka, M., 1987

[6] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[7] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[8] Makarov V. L., Guminskii V. V., “Trekhtochechnaya raznostnaya skhema vysokogo poryadka tochnosti dlya sistemy obyknovennykh differentsialnykh uravnenii vtorogo poryadka (nesamosopryazhennyi sluchai)”, Differents. ur-niya, 30:3 (1994), 493–502 | MR | Zbl