@article{ZVMMF_2002_42_5_a1,
author = {M. M. Spalevi\'c},
title = {Quadrature formulas of {Radau} and {Lobatto} type connected to $s$-orthogonal polynomials},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {615--626},
year = {2002},
volume = {42},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a1/}
}
TY - JOUR AU - M. M. Spalević TI - Quadrature formulas of Radau and Lobatto type connected to $s$-orthogonal polynomials JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 615 EP - 626 VL - 42 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a1/ LA - en ID - ZVMMF_2002_42_5_a1 ER -
M. M. Spalević. Quadrature formulas of Radau and Lobatto type connected to $s$-orthogonal polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 5, pp. 615-626. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_5_a1/
[1] Ghizzetti A., Ossicini A., Quadrature formulae, Acad. Verlag, Berlin, 1970 | MR
[2] Turán P., “On the theory of mecchanical quadrature”, Acta Sci. Math. Szeged., 12 (1950), 30–37 | MR
[3] Gautschi W., Milovanović G. V., “$S$-orthogonality and construction of Gauss–Turán type quadrature formulae”, J. Comput. Appl. Math., 86 (1997), 205–218 | DOI | MR | Zbl
[4] Vincenti G., “On the computation of the coefficients of $s$-orthogonal polynomials”, SIAM J. Numer. Analys., 23 (1986), 290–1294 | DOI | MR
[5] Stroud A. H., Stancu D. D., “Quadrature formulas with multiple gaussian nodes”, SIAM J. Numer. Analys. B, 2 (1965), 129–143 | MR | Zbl
[6] Stancu D. D., “Asupra unor formule generale de integrare numericǎ”, Acad. R. P. Romîne. Stud. Cere. Mat., 9 (1958), 209–216 | MR | Zbl
[7] Miovanović G. V., Spalević M. M., “A numerical procedure for coefficients in generalized Gauss–Turán quadratures”, Filomat (Niš), 9:1 (1995), 1–8 | MR
[8] Spalević M. M., “Product of Turán quadratures for cube, simplex, surface of the sphere, $E_n^r$ $E_n^{r^2}$”, J. Comput. Appl. Math., 106 (1999), 99–115 | DOI | MR | Zbl
[9] Bernstein S., “Sur les polynomes orthogonaux relatifs à un segment fini”, J. Math. Pures and Appl., 9 (1930), 127–177 | Zbl
[10] Ossicini A., Rosati F., “Funzioni caratteristiche nelle formule di quadratura gaussians con nodi multipli”, Bull. Univ. Mat. Ital., 11 (1975), 224–237 | MR | Zbl
[11] Ossicini A., Rosati F., “$S$-orthogonal Jacobi polynomials”, Rend. Mat. Appl., 12 (1992), 399–403 | MR | Zbl
[12] Shi Y.G., “On Turan quadrature formulas for the Chebyshev weight”, J. Approximat. Theory, 96 (1999), 101–110 | DOI | MR | Zbl
[13] Shi Y. G., “On Gaussian quadrature formulas for the Chebyshev weight”, J. Approximat. Theory, 98 (1999), 183–195 | DOI | MR | Zbl
[14] Gori L., Micchelli C. A., “On weight functions which admit explicit Gauss–Turán quadrature foramulas”, Math. Comput., 65 (1996), 1567–1581 | DOI | MR | Zbl
[15] Ossicini A., “Le funzioni di influenza nel problema di Gauss sulle formule di quadratura”, Mathematiche (Catania), 23 (1968), 7–30 | MR | Zbl
[16] Frontini M., Milovanović G. V., “Moment-preserving spline approximation on intervals and Turán quadratures”, Facta Univ. Ser. Math. Inform, 4 (1989), 45–56 | MR | Zbl
[17] Gori L., Santi E., “On a method of approximation by mean of spline functions”, Proc. Internat. Simp. On Approximation, Optimizat. And Comput. (Dalian, China), 45–56 | Zbl
[18] Milovanović G. V., Kovačević M. A., “Moment-preserving spline approximation and Turán quadratures”, Numer. Math., ISNM 86, Singapore, Birkhauser, Basel, 1999, 357–365 | MR