Improving the convergence of the Lanczos method in solving algebraic saddle point problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 4, pp. 504-513 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_4_a4,
     author = {E. V. Chizhonkov},
     title = {Improving the convergence of the {Lanczos} method in solving algebraic saddle point problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {504--513},
     year = {2002},
     volume = {42},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a4/}
}
TY  - JOUR
AU  - E. V. Chizhonkov
TI  - Improving the convergence of the Lanczos method in solving algebraic saddle point problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 504
EP  - 513
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a4/
LA  - ru
ID  - ZVMMF_2002_42_4_a4
ER  - 
%0 Journal Article
%A E. V. Chizhonkov
%T Improving the convergence of the Lanczos method in solving algebraic saddle point problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 504-513
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a4/
%G ru
%F ZVMMF_2002_42_4_a4
E. V. Chizhonkov. Improving the convergence of the Lanczos method in solving algebraic saddle point problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 4, pp. 504-513. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a4/

[1] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989 | MR

[2] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, New York, 1991 | MR | Zbl

[3] Vasilevskii Yu. V., “Metody resheniya kraevykh zadach s ispolzovaniem nestykuyuschikhsya setok”, Tr. Matem. tsentra im. N. I. Lobachevskogo, v. 2, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, UNIPRESS, Kazan, 1999, 94–121

[4] Bychenkov Yu. V., Chizhonkov E. V., “Optimization of one three-parameter method of solving an algebraic system of the Stokes type”, Russ. J. Numer. Analys. and Math. Modelling, 14:5 (1999), 429–440 | DOI | MR | Zbl

[5] Voevodin B. B., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[6] Dyakonov E. G., “O nekotorykh klassakh sedlovykh gradientnykh metodov”, Vychisl. protsessy i sistemy, 5, Fizmattiz, M., 1987, 101–115 | MR

[7] Aristov P. P., “Ob uskorenii skhodimosti odnogo iteratsionnogo metoda resheniya zadachi Stoksa”, Izv. vuzov. Matematika, 1994, no. 9, 3–10 | MR | Zbl

[8] Klawonn A., “An optimal preconditions for a class of saddle point problems with a penalty term”, SIAM J. Sci. Comput., 19:2 (1998), 540–552 | DOI | MR | Zbl

[9] Iliash Ju., Rossi T., Torvanen J., Two iterative methods for solving the Stokes problem, Techn. Rept 2, Univ. Jyvaskyla, Dept Math., Lab. Scient. Comput., 1993

[10] Boganev K. Yu., “Effektivnye algoritmy resheniya zhestkikh ellipticheskikh zadach s bolshimi parametrami”, Tr. Matem. tsentra im. N. I. Lobachevskogo, v. 2, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, UNIPRESS, Kazan, 1999, 3–44

[11] Vassilevski P. S., Lazarov R. D., “Preconditioning mixed finite element saddle – point elliptic problems”, Numer. Linear Algebra with Appl., 3 (1996), 1–20 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] Chizhonkov E. B., “Nekotorye rezultaty o skhodimosti algoritma Errou–Gurvitsa dlya algebraicheskoi sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 523–533 | MR | Zbl

[13] Silvester D., Wathen A., “Fast iterative solution of stabilized Stokes systems. Part II: Using general block preconditioned”, SIAM J. Numer. Analys., 31:5 (1994), 1352–1367 | DOI | MR | Zbl