@article{ZVMMF_2002_42_4_a4,
author = {E. V. Chizhonkov},
title = {Improving the convergence of the {Lanczos} method in solving algebraic saddle point problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {504--513},
year = {2002},
volume = {42},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a4/}
}
TY - JOUR AU - E. V. Chizhonkov TI - Improving the convergence of the Lanczos method in solving algebraic saddle point problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 504 EP - 513 VL - 42 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a4/ LA - ru ID - ZVMMF_2002_42_4_a4 ER -
%0 Journal Article %A E. V. Chizhonkov %T Improving the convergence of the Lanczos method in solving algebraic saddle point problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 504-513 %V 42 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a4/ %G ru %F ZVMMF_2002_42_4_a4
E. V. Chizhonkov. Improving the convergence of the Lanczos method in solving algebraic saddle point problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 4, pp. 504-513. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a4/
[1] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989 | MR
[2] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, New York, 1991 | MR | Zbl
[3] Vasilevskii Yu. V., “Metody resheniya kraevykh zadach s ispolzovaniem nestykuyuschikhsya setok”, Tr. Matem. tsentra im. N. I. Lobachevskogo, v. 2, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, UNIPRESS, Kazan, 1999, 94–121
[4] Bychenkov Yu. V., Chizhonkov E. V., “Optimization of one three-parameter method of solving an algebraic system of the Stokes type”, Russ. J. Numer. Analys. and Math. Modelling, 14:5 (1999), 429–440 | DOI | MR | Zbl
[5] Voevodin B. B., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl
[6] Dyakonov E. G., “O nekotorykh klassakh sedlovykh gradientnykh metodov”, Vychisl. protsessy i sistemy, 5, Fizmattiz, M., 1987, 101–115 | MR
[7] Aristov P. P., “Ob uskorenii skhodimosti odnogo iteratsionnogo metoda resheniya zadachi Stoksa”, Izv. vuzov. Matematika, 1994, no. 9, 3–10 | MR | Zbl
[8] Klawonn A., “An optimal preconditions for a class of saddle point problems with a penalty term”, SIAM J. Sci. Comput., 19:2 (1998), 540–552 | DOI | MR | Zbl
[9] Iliash Ju., Rossi T., Torvanen J., Two iterative methods for solving the Stokes problem, Techn. Rept 2, Univ. Jyvaskyla, Dept Math., Lab. Scient. Comput., 1993
[10] Boganev K. Yu., “Effektivnye algoritmy resheniya zhestkikh ellipticheskikh zadach s bolshimi parametrami”, Tr. Matem. tsentra im. N. I. Lobachevskogo, v. 2, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, UNIPRESS, Kazan, 1999, 3–44
[11] Vassilevski P. S., Lazarov R. D., “Preconditioning mixed finite element saddle – point elliptic problems”, Numer. Linear Algebra with Appl., 3 (1996), 1–20 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[12] Chizhonkov E. B., “Nekotorye rezultaty o skhodimosti algoritma Errou–Gurvitsa dlya algebraicheskoi sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 523–533 | MR | Zbl
[13] Silvester D., Wathen A., “Fast iterative solution of stabilized Stokes systems. Part II: Using general block preconditioned”, SIAM J. Numer. Analys., 31:5 (1994), 1352–1367 | DOI | MR | Zbl