The Butterworth wavelet transform and its implementation with the use of recursive filters
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 4, pp. 597-608 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_4_a12,
     author = {V. A. Zheludev and A. B. Pevnyi},
     title = {The {Butterworth} wavelet transform and its implementation with the use of recursive filters},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {597--608},
     year = {2002},
     volume = {42},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a12/}
}
TY  - JOUR
AU  - V. A. Zheludev
AU  - A. B. Pevnyi
TI  - The Butterworth wavelet transform and its implementation with the use of recursive filters
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 597
EP  - 608
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a12/
LA  - ru
ID  - ZVMMF_2002_42_4_a12
ER  - 
%0 Journal Article
%A V. A. Zheludev
%A A. B. Pevnyi
%T The Butterworth wavelet transform and its implementation with the use of recursive filters
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 597-608
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a12/
%G ru
%F ZVMMF_2002_42_4_a12
V. A. Zheludev; A. B. Pevnyi. The Butterworth wavelet transform and its implementation with the use of recursive filters. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 4, pp. 597-608. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_4_a12/

[1] Zheludev V. A., Pevnyi A. B., “Biortogonalnye veivletnye skhemy, osnovannye na interpolyatsii diskretnymi splainami”, Zh. vychisl. matem. i matem. fiz., 41:4 (2001), 537–548 | MR | Zbl

[2] Pevnyi A., Zheludev V., “On interpolation by discrete splines with equidistant nodes”, J. Approx. Theory, 102 (2000), 286–301 | DOI | MR | Zbl

[3] Zheludev V. A., Averbuch A. Z., “A biorthogonal wavelet scheme based on interpolatory splines”, Proc. Second Internal. Conf. “Tools for math. modelling '99” (June 14–19, 1999), v. 4, SPTU, St. Petersburg, 1999, 214–231 | MR

[4] Donoho D. L., Interpolating wavelet transform, Preprint 408, Dept. of Statistics. Stanford Univ., 1992 | MR

[5] Sweldens W., “The lifting scheme: A custom design construction of biorthogonal wavelets”, Appl. Comput. Harmonic Analys., 3:2 (1996), 186–200 | DOI | MR | Zbl

[6] Sweldens W., Schröder P., “Building your own wavelets at home”, Wavelets in Comput. Graphics, Course Notes, ACM SIGGRAPH, 1996

[7] Kappelini V., Konstantinidis A., Emiliani P., Tsifrovye filtry i ikh primenenie, Energoatomizdat, M., 1983

[8] Averbuch A., Pevnyi A., Zheludev V., “Construction of biorthogonal wavelets originated from interpolatory splines”, Proc. SPIE. Wavelet Applic. in Signal and Image Proc. VIII, 4119, 2000

[9] Herley C., Vetterli M., “Wavelets and recursive filter banks”, IEEE Trans. Signal Proc., 41:8 (1993), 2536–2556 | DOI | Zbl

[10] Petukhov A. P., Vvedenie v teoriyu bazisov vspleskov, SPbGTU, SPb., 1999