Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 3, pp. 370-379
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_3_a7,
     author = {D. S. Anikonov and I. V. Prokhorov},
     title = {Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {370--379},
     year = {2002},
     volume = {42},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_3_a7/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - I. V. Prokhorov
TI  - Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 370
EP  - 379
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_3_a7/
LA  - ru
ID  - ZVMMF_2002_42_3_a7
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A I. V. Prokhorov
%T Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 370-379
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_3_a7/
%G ru
%F ZVMMF_2002_42_3_a7
D. S. Anikonov; I. V. Prokhorov. Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 3, pp. 370-379. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_3_a7/

[1] Anikonov D. S., Prokhorov I. V., “Znachenie koeffitsienta pogloscheniya izlucheniya v diagnostike rasseivayuschikh i pogloschayuschikh sred”, Dokl. RAN, 359:1 (1999), 24–26 | MR

[2] Anikonov D. S., “Postroenie indikatora neodnorodnosti pri radiatsionnom obsledovanii sredy”, Dokl. RAN, 357:3 (1997), 324–327

[3] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Vidimye i nevidimye sredy v tomografii”, Dokl. RAN, 357:5 (1997), 599–603 | MR | Zbl

[4] Anikonov D. S., “Integra-differential heterogeneity indicator in tomography problem”, J. Inv. Ill-Posed Problems, 7:1 (1999), 17–59 | DOI | MR | Zbl

[5] Fano U, Spenser L., Berger M., Perenos gamma-izlucheniya, Gosatomizdat, M., 1963

[6] Fernandez J. E., Hubbell J. H., Hanson A. L., Spenser L. V., “Polarization effects on multiple scattering gamma transport”, Radiat. Phys. Chem., 41:4/5 (1993), 579–630 | DOI

[7] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[8] Anikonov D. C., “Zadacha tipa Stefanu dlya uravneniya perenosa”, Dokl. RAN, 338:1 (1994), 25–28 | Zbl

[9] Vladimirov B. C., “Matematicheskie zadachi odnoskorrstnoi terrii perenosa chastits”, T. MIAN CCSP, 61, M., 1961

[10] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[11] Tikhonov A. N., Arsenin V Ya., Timonov A. A., Matematicheskie zadachi kompyuternoi tomografii, Nauka, M., 1987 | MR

[12] Levin G. G., Starostenko O. V., “O vozmozhnosti tomograficheskikh issledovanii rasseivayuschikh sred”, Lineinye i nelineinye zadachi vychisl. tomografii, Novosibirsk, 1985, 86–99

[13] Henke B. L., Gullikson E. M., Davis J. C., “Atopic data and nuclear data tables”, J. Devoted Compilations Experimental and Theor. Results., 54:2 (1993), 181–343

[14] Hubbell J. H., Seltzer S. M., Tables of X-ray mass attenuation coefficients and mass energy-absorbtion coefficients 1 keV tp 20 MeV tor elements Z=1 to 92 and 48 additional substances of dosimetric interest, NISTIR-5632, Nat. Inst. Standard and Technol. Gaithersburg, 1995

[15] Kihara H., “3D imaging of X-ray microscopy”, Sci. Form 1990 KTK Scient. Pufel. Tokyo, 105–114

[16] Nazaraliev M. A., Statisticheskoe modelirovanie radiatsionnykh protsessov v atmosfere, Nauka, Novosibirsk, 1990 | Zbl