@article{ZVMMF_2002_42_3_a7,
author = {D. S. Anikonov and I. V. Prokhorov},
title = {Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {370--379},
year = {2002},
volume = {42},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_3_a7/}
}
TY - JOUR AU - D. S. Anikonov AU - I. V. Prokhorov TI - Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 370 EP - 379 VL - 42 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_3_a7/ LA - ru ID - ZVMMF_2002_42_3_a7 ER -
%0 Journal Article %A D. S. Anikonov %A I. V. Prokhorov %T Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 370-379 %V 42 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_3_a7/ %G ru %F ZVMMF_2002_42_3_a7
D. S. Anikonov; I. V. Prokhorov. Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 3, pp. 370-379. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_3_a7/
[1] Anikonov D. S., Prokhorov I. V., “Znachenie koeffitsienta pogloscheniya izlucheniya v diagnostike rasseivayuschikh i pogloschayuschikh sred”, Dokl. RAN, 359:1 (1999), 24–26 | MR
[2] Anikonov D. S., “Postroenie indikatora neodnorodnosti pri radiatsionnom obsledovanii sredy”, Dokl. RAN, 357:3 (1997), 324–327
[3] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Vidimye i nevidimye sredy v tomografii”, Dokl. RAN, 357:5 (1997), 599–603 | MR | Zbl
[4] Anikonov D. S., “Integra-differential heterogeneity indicator in tomography problem”, J. Inv. Ill-Posed Problems, 7:1 (1999), 17–59 | DOI | MR | Zbl
[5] Fano U, Spenser L., Berger M., Perenos gamma-izlucheniya, Gosatomizdat, M., 1963
[6] Fernandez J. E., Hubbell J. H., Hanson A. L., Spenser L. V., “Polarization effects on multiple scattering gamma transport”, Radiat. Phys. Chem., 41:4/5 (1993), 579–630 | DOI
[7] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl
[8] Anikonov D. C., “Zadacha tipa Stefanu dlya uravneniya perenosa”, Dokl. RAN, 338:1 (1994), 25–28 | Zbl
[9] Vladimirov B. C., “Matematicheskie zadachi odnoskorrstnoi terrii perenosa chastits”, T. MIAN CCSP, 61, M., 1961
[10] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl
[11] Tikhonov A. N., Arsenin V Ya., Timonov A. A., Matematicheskie zadachi kompyuternoi tomografii, Nauka, M., 1987 | MR
[12] Levin G. G., Starostenko O. V., “O vozmozhnosti tomograficheskikh issledovanii rasseivayuschikh sred”, Lineinye i nelineinye zadachi vychisl. tomografii, Novosibirsk, 1985, 86–99
[13] Henke B. L., Gullikson E. M., Davis J. C., “Atopic data and nuclear data tables”, J. Devoted Compilations Experimental and Theor. Results., 54:2 (1993), 181–343
[14] Hubbell J. H., Seltzer S. M., Tables of X-ray mass attenuation coefficients and mass energy-absorbtion coefficients 1 keV tp 20 MeV tor elements Z=1 to 92 and 48 additional substances of dosimetric interest, NISTIR-5632, Nat. Inst. Standard and Technol. Gaithersburg, 1995
[15] Kihara H., “3D imaging of X-ray microscopy”, Sci. Form 1990 KTK Scient. Pufel. Tokyo, 105–114
[16] Nazaraliev M. A., Statisticheskoe modelirovanie radiatsionnykh protsessov v atmosfere, Nauka, Novosibirsk, 1990 | Zbl