A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 1, pp. 23-32
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ZVMMF_2002_42_1_a2,
author = {R. V. Efremov and G. K. Kamenev},
title = {A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {23--32},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/}
}
TY - JOUR AU - R. V. Efremov AU - G. K. Kamenev TI - A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 23 EP - 32 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/ LA - ru ID - ZVMMF_2002_42_1_a2 ER -
%0 Journal Article %A R. V. Efremov %A G. K. Kamenev %T A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 23-32 %V 42 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/ %G ru %F ZVMMF_2002_42_1_a2
R. V. Efremov; G. K. Kamenev. A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/