A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 1, pp. 23-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_1_a2,
     author = {R. V. Efremov and G. K. Kamenev},
     title = {A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {23--32},
     year = {2002},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/}
}
TY  - JOUR
AU  - R. V. Efremov
AU  - G. K. Kamenev
TI  - A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 23
EP  - 32
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/
LA  - ru
ID  - ZVMMF_2002_42_1_a2
ER  - 
%0 Journal Article
%A R. V. Efremov
%A G. K. Kamenev
%T A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 23-32
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/
%G ru
%F ZVMMF_2002_42_1_a2
R. V. Efremov; G. K. Kamenev. A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[2] Lotov A. V., Bushenkov V. A., Kamenev G. K., Metod dostizhimykh tselei. Matematicheskie osnovy i ekologicheskie prilozheniya, Mellen Press, Lewiston, 1999

[3] Gruber P. M., “Approximation of convex bodies”, Convexity and its Applies., Birkhäuser, Basel etc., 1983, 131–162 | MR

[4] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[5] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl

[6] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR

[7] Efremov R. V., “Tochnaya otsenka asimptoticheskoi effektivnosti adaptivnogo algoritma approksimatsii vypuklykh gladkikh tel mnogogrannikami v dvumernom sluchae”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 2000, no. 2, 29–32 | MR | Zbl

[8] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982

[9] Bushenkov V. A., “Iteratsionnyi metod postroeniya ortogonalnykh proektsii vypuklykh mnogogrannykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1285–1292 | MR | Zbl

[10] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl

[11] Kamenev G. K., “Effektivnye algoritmy vnutrennei poliedralnoi approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 446–450 | MR | Zbl

[12] Schneider S., Wieaker J. A., “Approximation of convex bodies by polytopes”, Bull. London Math. Soc., 13:41 (1981), 149–156 | DOI | MR | Zbl

[13] Schneider R., “Zur optimalen Approximation konvexer Hyperflachen durch Polyeder”, Math. Ann., 256:3 (1983), 289–301 | DOI | MR

[14] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies I”, Forum Math., 1993, no. 5, 281–297 | DOI | MR | Zbl

[15] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek na osnove triangulyatsii”, Zh. vychisl. matem. i matem. fiz., 31:8 (1991), 1231–1242 | MR

[16] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek pri priblizhennykh vychisleniyakh”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl

[17] Dzholdybaeva S. M., Kamenev G. K., Eksperimentalnoe issledovanie approksimatsii vypuklykh tel mnogogrannikami, VTs AN SSSR, M., 1991