A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 1, pp. 23-32

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZVMMF_2002_42_1_a2,
     author = {R. V. Efremov and G. K. Kamenev},
     title = {A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/}
}
TY  - JOUR
AU  - R. V. Efremov
AU  - G. K. Kamenev
TI  - A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 23
EP  - 32
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/
LA  - ru
ID  - ZVMMF_2002_42_1_a2
ER  - 
%0 Journal Article
%A R. V. Efremov
%A G. K. Kamenev
%T A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 23-32
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/
%G ru
%F ZVMMF_2002_42_1_a2
R. V. Efremov; G. K. Kamenev. A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_1_a2/