An adaptive algorithm for computing a function on the Lipschitzian boundary of a three-dimensional body from a given gradient, and its application in magnetostatics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1836-1851 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_12_a9,
     author = {E. P. Zhidkov and O. I. Yuldashev and M. B. Yuldasheva},
     title = {An adaptive algorithm for computing a function on the {Lipschitzian} boundary of a three-dimensional body from a given gradient, and its application in magnetostatics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1836--1851},
     year = {2002},
     volume = {42},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a9/}
}
TY  - JOUR
AU  - E. P. Zhidkov
AU  - O. I. Yuldashev
AU  - M. B. Yuldasheva
TI  - An adaptive algorithm for computing a function on the Lipschitzian boundary of a three-dimensional body from a given gradient, and its application in magnetostatics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1836
EP  - 1851
VL  - 42
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a9/
LA  - ru
ID  - ZVMMF_2002_42_12_a9
ER  - 
%0 Journal Article
%A E. P. Zhidkov
%A O. I. Yuldashev
%A M. B. Yuldasheva
%T An adaptive algorithm for computing a function on the Lipschitzian boundary of a three-dimensional body from a given gradient, and its application in magnetostatics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1836-1851
%V 42
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a9/
%G ru
%F ZVMMF_2002_42_12_a9
E. P. Zhidkov; O. I. Yuldashev; M. B. Yuldasheva. An adaptive algorithm for computing a function on the Lipschitzian boundary of a three-dimensional body from a given gradient, and its application in magnetostatics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1836-1851. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a9/

[1] Rank E., Babuska I., “An expert system for the optimal mesh design in the hp-version of the finite element method”, Internat. J. Numer. Methods Engng., 24 (1987), 2087–2106 | DOI | MR | Zbl

[2] Demkowicz L., Oden J. T., Rachowicz W., Hardy O., “Toward a universal h-p adaptive finite element strategy. Part 1. Constrained approximation and data structure”, Comput. Meth. Appl. Mech. Engng., 77 (1989), 79–112 | DOI | MR | Zbl

[3] C. A. Brebbia, M. H. Aliabadi (eds.), Adaptive finite and boundary element methods, Wessex Inst. Technol., Southampton, 1992.

[4] Georges M. K., Shepard M. S., “Automated adaptive two-dimensional system for the hp-version of the finite element method”, Internat. J. Numer. Meth. Engng., 32 (1991), 867–893 | DOI | Zbl

[5] Emson C. R. I., Simkin J., Trowbridge C. W., “A status report on electromagnetic field computation”, IEEE Trans. Mag., 30:4 (1994), 1533–1540 | DOI

[6] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[7] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[8] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[9] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl

[10] Stretton Dzh. A., Teoriya elektromagnetizma, Gostekhteorizdat, M., 1948

[11] Airyan E. A., Zhidkov E. P., Fedorov A. V. i dr., “Chislennye algoritmy rascheta magnitnykh sistem uskoritelei zaryazhennykh chastits”, Fiz. elementarnykh chastits i at. yadra, 21:1 (1990), 251–307 | MR

[12] Simkin J., Trowbridge C. W., “Three dimensional non-linear electromagnetic field computations using scalar potentials”, Proc. IEE, 127:6 (1980), 368–374, Pt. B

[13] Zhidkoe E. P., Yuldasheva M. B., Yudin I. P., Yuldashev O. I., Matematicheskoe modelirovanie prostranstvennogo magnitnogo polya spektrometricheskogo magnita SP-40, Soobsch. OIYaI R11-94-160, OIYaI, Dubna, 1994

[14] Meijerink J. A., van der Vorst H. A., “An iterative solution for linear systems of which the coefficient matrix is a Symmetric M-Matrix”, Math. Comput., 31 (1977), 148–162 | MR | Zbl

[15] Yuldasheva M. B., Yuldashev O. I., Kompleks programm MSFE3D dlya raschetov prostranstvennykh magnitostaticheskikh polei. Versiya 1.2, Soobsch. OIYaI R11-94-202, OIYaI, Dubna, 1994

[16] Alekseev I. G., Bazhanov N. A., Borisov N. S. i dr., Issledovanie polyarizovannykh parametrov v binarnykh reaktsiyakh rozhdeniya strannykh chastits $\pi p\to K\Lambda(\Sigma)$ na uskoritele ITEF (Predlozhenie eksperimenta), Preprint ITEF 41-97, GNTs RF ITEF, M., 1997

[17] Davletshin R. I., Zhidkov E. P., Kulikov V. V. i dr., Kompyuternaya model magnita dlya proekta eksperimenta s polyarizovannoi mishenyu v ITEF. Raschet osnovnykh variantov bez polyarizuyuschikh nakonechnikov, Soobsch. OIYaI R11-98-351, OIYaI, Dubna, 1998

[18] Adeva B., Aguilar-Benitez M., Akbari H. et al., “The construction of the L3 experiment”, Nucl. Instruments and Methods in Phys. Res. A, 289 (1990), 35–102 | DOI

[19] ALICE Technical Proposal, CERN/LHCC 95-71, CERN, Geneva, 1995

[20] Akishin P. G., Vodopianov A. S., Puzynin I. V. et al., Computing models of the L3 magnet and dipole magnet for the ALICE experiment, ALICE Int. Note/Mag 96-06, CERN, Geneva, 1996

[21] Akishin P. G., Vodopyanov A. S., Puzynin I. V. i dr., “Modelirovanie polya myuonnogo detektora ustanovki ALICE”, Sb. dokl. XV Soveschaniya po uskoritelyam zaryazhennykh chastits, v. 2, GNTs RF IFVE, Protvino, 1996, 182–185