Application of the Fourier–Gauss transform to solution of Cauchy problem of the Schrödinger equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1810-1815 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_12_a6,
     author = {G. R. Aidagulov},
     title = {Application of the {Fourier{\textendash}Gauss} transform to solution of {Cauchy} problem of the {Schr\"odinger} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1810--1815},
     year = {2002},
     volume = {42},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a6/}
}
TY  - JOUR
AU  - G. R. Aidagulov
TI  - Application of the Fourier–Gauss transform to solution of Cauchy problem of the Schrödinger equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1810
EP  - 1815
VL  - 42
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a6/
LA  - ru
ID  - ZVMMF_2002_42_12_a6
ER  - 
%0 Journal Article
%A G. R. Aidagulov
%T Application of the Fourier–Gauss transform to solution of Cauchy problem of the Schrödinger equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1810-1815
%V 42
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a6/
%G ru
%F ZVMMF_2002_42_12_a6
G. R. Aidagulov. Application of the Fourier–Gauss transform to solution of Cauchy problem of the Schrödinger equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1810-1815. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a6/

[1] Arsenev A. A., “Otsenka funktsii Grina operatora Shredingera”, Teor. i matem. fiz., 115:1 (1998), 85–92 | MR

[2] Hagedorn G. A., “Raising and lowering operators for semiclassical wave packets”, Ann. Phys., 269 (1998), 77–104 | DOI | MR | Zbl

[3] Hagedorn G. A., Joye A., “Exponentially accurate semiclassical dynamics: propagation, localization, Ehrenfest times, scattering and more general states”, Ann. Henri Poincaré, 1 (2000), 837–883 | DOI | MR | Zbl

[4] Zhidkov E. P., Lobanov Yu. Yu., “Metod priblizhennogo kontinualnogo integrirovaniya i nekotorye ego prilozheniya”, Matem. modelirovanie, 11:5 (1999), 37–83 | MR | Zbl

[5] Burghardt B., Stolze J., “Numerical evaluation of coherent-state path integrals in quantum dynamics”, J. Phys. A: Math. Gen., 32 (1999), 2075–2090 | DOI | MR | Zbl

[6] Folland G. B., Harmonic analysis in phase space, Princeton Univ. Press, Princeton, 1989 | MR | Zbl

[7] Chui K., Vvedenie v veivlety, Mir, M., 2001