@article{ZVMMF_2002_42_12_a2,
author = {S. I. Repin and M. E. Frolov},
title = {A posteriori error estimates for approximate solutions to boundary problem of elliptic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1774--1787},
year = {2002},
volume = {42},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a2/}
}
TY - JOUR AU - S. I. Repin AU - M. E. Frolov TI - A posteriori error estimates for approximate solutions to boundary problem of elliptic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1774 EP - 1787 VL - 42 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a2/ LA - ru ID - ZVMMF_2002_42_12_a2 ER -
%0 Journal Article %A S. I. Repin %A M. E. Frolov %T A posteriori error estimates for approximate solutions to boundary problem of elliptic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1774-1787 %V 42 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a2/ %G ru %F ZVMMF_2002_42_12_a2
S. I. Repin; M. E. Frolov. A posteriori error estimates for approximate solutions to boundary problem of elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1774-1787. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a2/
[1] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR
[2] Mikhlin S. G., Variatsionnye metody matematicheskoi fiziki, Nauka, M., 1970 | MR | Zbl
[3] Aubin J. P., Purchard H. G., “Some aspects of the method of hypercircle applied to elliptic variational problems”, Numer. Solutions of Partial Differential Equations-II. SYNSPADE, 1970, Acad. Press, New York, 1974
[4] Babuška I., Rheinboldt W. C., “A-posteriory error estimates for the finite element method”, Internat. J. Numer. Meth. Engng., 12 (1978), 1597–1615 | DOI | Zbl
[5] Babuška I., Rheinboldt W. C., “Eror estimates for adaptive finite element comutations”, SIAM J. Numer. Analys., 15:4 (1978), 736–754 | DOI | MR | Zbl
[6] Babuška I., Strouboulis T., The finite element method and its reliability, Numer. Math. and Scient. Comput., Clarendon Press, Oxford Univ., New York, 2001 | MR | Zbl
[7] Ainsworth M., Oden J. T., “A unified approach to a posteriori error estimation using element residual methods”, Numer. Math., 65:1 (1993), 23–50 | DOI | MR | Zbl
[8] Ainsworth M., Oden J. T., A posteriori error estimation in finite element analysis, Wiley, New York, 2000 | MR | Zbl
[9] Johnson C., Hansbo P., “Adaptive finite element methods in computational mechanics”, Comput. Methods. Appl. Mech. Engng., 101 (1992), 143–181 | DOI | MR | Zbl
[10] Oden J. T., Demkowicz L., Rachowicz W., Westermann T. A., “Towards a universal $h$-$p$ adaptive finite element strategy. Part 2. A posteriori error estimation”, Comput. Methods Appl. Mech. Engng., 77 (1989), 113–180 | DOI | MR | Zbl
[11] Verfürth R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, Berlin, 1996
[12] Houston P., Mackenzie J. A., Süli E., Warnecke G., “A posteriori error analysis for numerical approximatins of Friederichs systems”, Numer. Math., 82 (1999), 433–470 | DOI | MR | Zbl
[13] Chen Z., Nochetto R. H., “Residual type a posteriori error estimates for elliptic obstacle problems”, Numer. Math., 84 (2000), 527–548 | DOI | MR | Zbl
[14] Zienkiewicz O. C., Zhu J. Z., “A simple error estimator and adaptive procedure for practical engineering analysis”, Internat. J. Numer. Meth. Engng., 24 (1987), 337–357 | DOI | MR | Zbl
[15] by Zienkiewicz O. C., Zhu J. Z. “The superconvergent patch recovery (SPR) and adaptive finite element refinement”, Comput. Methods. Appl. Mech. Engng., 101 (1992), 207–224 | DOI | MR | Zbl
[16] Wahlbin B., Superconvergence in Galerkin finite element methods, Lect. Notes. Math., 1605, Springer, Berlin, 1995 | MR | Zbl
[17] Repin S. I., “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. nauchn. seminarov POMI, 243, SPb., 1997, 196–208
[18] Repin S. L., “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (1999), 481–500 | DOI | MR
[19] Repin S. I., “A unified approach to a posteriori error estimation based on duality error majorants”, Math. and Comput. Simulation, 50 (1999), 305–321 | DOI | MR
[20] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR
[21] Clement Ph., “Approximations by finite element functions using local regularization”, RIARO Analys. Numer., 9:2 (1975), 77–84 | MR | Zbl
[22] Ciarlet P., The finite element method for elliptic problems, North-Holland, Amsterdam, 1978 | MR | Zbl
[23] Carstensen C., Funken S. A., “Constants in Clement-interpolation error and residual based a posteriori error estimates in finite element methods”, East-West J. Numer. Math., 8:3 (2000), 153–175 | MR | Zbl
[24] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1971 | MR
[25] Zlamal M., “Some superconvergence results in the finite element method”, Math. Aspects Finite Element Methods, Lect. Notes. Math., 606, Springer, Berlin, 1975, 353–362 | MR
[26] Neittaanmäki P., Repin S. T., “A posteriori error estimates for boundary-value problems related to the biharmonic operator”, East-West J. Numer. Math., 9:2 (2001), 157–178 | MR
[27] Repin S. I., “Aposteriornye otsenki tochnosti variatsionnykh metodov v zadachakh s nevypuklymi funktsionalami”, Algebra i analiz, 11:4 (1999), 151–182 | MR | Zbl
[28] Repin S. I., “Extimates of deviations from exact solutions of elliptic variational inequalities”, Zap. nauchn. seminarov POMI, 271, SPb., 2000, 188–203 | MR | Zbl
[29] Ekeland I., Temam R., Convex analysis and variational problems, North-Holland, Amsterdam etc., 1976 | MR | Zbl