Effective dimension of a phase trajectory in the visualization of dynamical systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1891-1898 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_12_a14,
     author = {E. D. Belega and A. A. Rybakov and D. N. Trubnikov and A. I. Chulichkov},
     title = {Effective dimension of a phase trajectory in the visualization of dynamical systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1891--1898},
     year = {2002},
     volume = {42},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a14/}
}
TY  - JOUR
AU  - E. D. Belega
AU  - A. A. Rybakov
AU  - D. N. Trubnikov
AU  - A. I. Chulichkov
TI  - Effective dimension of a phase trajectory in the visualization of dynamical systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1891
EP  - 1898
VL  - 42
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a14/
LA  - ru
ID  - ZVMMF_2002_42_12_a14
ER  - 
%0 Journal Article
%A E. D. Belega
%A A. A. Rybakov
%A D. N. Trubnikov
%A A. I. Chulichkov
%T Effective dimension of a phase trajectory in the visualization of dynamical systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1891-1898
%V 42
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a14/
%G ru
%F ZVMMF_2002_42_12_a14
E. D. Belega; A. A. Rybakov; D. N. Trubnikov; A. I. Chulichkov. Effective dimension of a phase trajectory in the visualization of dynamical systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1891-1898. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a14/

[1] Bondarenko S. P., Pytev Yu. P., “Ob effektivnom range modeli lineinykh izmerenii s oshibkoi”, Zh. vychisl. matem. i matem. fiz., 35:1 (1995), 6–23 | MR | Zbl

[2] Pyt'ev Yu. P., Pyt'ev A. Yu., “Effective Dimensionality and Data Compression”, Partem Recongnit. and Image Analys., 7:4 (1997), 393–406 | MR

[3] Pytev A. Yu., Pytev Yu. P., “Ob effektivnoi razmernosti mnozhestva izmerenii”, Zh. vychisl. matem. i matem. fiz., 38:4 (1998), 682–697 | MR

[4] Gromov M. A., Serdobolskaya M. L., “Ob effektivnom range konechnomernykh priblizhenii beskonechnomernoi lineinoi modeli izmereniya”, Matem. modelirovanie, 10:4 (1998), 33–45 | MR

[5] Serdobolskaya M. L., “Ob effektivnom range beskonechnomernoi lineinoi modeli izmereniya”, Vestn. MGU. Ser 3. Fiz. astron., 2000, no. 5, 5–8

[6] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Izd-vo inostr. lit., M., 1954

[7] Aziz R. A., “Interatomic potentials for rare gasses: pure and mixed interaction”, Inert Gases, Ch. 2, Springer, Berlin, 1984

[8] Hinde R. J., Berry R. S., “Chaotic dynamics in small inert gas clusters: The influence of potential energy saddles”, J. Chem. Phys., 99:4 (1993), 2942–2963 | DOI

[9] Jellinek J. J., Jasien P. G., The structure of small molecules and ions, Plenum Publ. Corp., New York, 1988, 39–47

[10] Belega E. D., Elyutin P. V., Trubnikov D. N., Shvilkina L. B., “Phase space structure of rotating trimers of nobel gas atoms”, Physics-Doclady, 42 (1997), 750–753

[11] Belega E. D., Trubnikov D. N., Lohr L. L., “The effect of rotation on the internal dynamics and phase space structure of rare gas trimers”, Phys. Rev. A, 63 (2001), 043203, 6 pp. | DOI

[12] Berry R. S., “Many dimensional potential surfaces: what they imply and how to think about them”, Internat. J. Quant. Chem., 58:6 (1996), 657–670 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI