@article{ZVMMF_2002_42_12_a14,
author = {E. D. Belega and A. A. Rybakov and D. N. Trubnikov and A. I. Chulichkov},
title = {Effective dimension of a phase trajectory in the visualization of dynamical systems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1891--1898},
year = {2002},
volume = {42},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a14/}
}
TY - JOUR AU - E. D. Belega AU - A. A. Rybakov AU - D. N. Trubnikov AU - A. I. Chulichkov TI - Effective dimension of a phase trajectory in the visualization of dynamical systems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1891 EP - 1898 VL - 42 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a14/ LA - ru ID - ZVMMF_2002_42_12_a14 ER -
%0 Journal Article %A E. D. Belega %A A. A. Rybakov %A D. N. Trubnikov %A A. I. Chulichkov %T Effective dimension of a phase trajectory in the visualization of dynamical systems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1891-1898 %V 42 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a14/ %G ru %F ZVMMF_2002_42_12_a14
E. D. Belega; A. A. Rybakov; D. N. Trubnikov; A. I. Chulichkov. Effective dimension of a phase trajectory in the visualization of dynamical systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1891-1898. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a14/
[1] Bondarenko S. P., Pytev Yu. P., “Ob effektivnom range modeli lineinykh izmerenii s oshibkoi”, Zh. vychisl. matem. i matem. fiz., 35:1 (1995), 6–23 | MR | Zbl
[2] Pyt'ev Yu. P., Pyt'ev A. Yu., “Effective Dimensionality and Data Compression”, Partem Recongnit. and Image Analys., 7:4 (1997), 393–406 | MR
[3] Pytev A. Yu., Pytev Yu. P., “Ob effektivnoi razmernosti mnozhestva izmerenii”, Zh. vychisl. matem. i matem. fiz., 38:4 (1998), 682–697 | MR
[4] Gromov M. A., Serdobolskaya M. L., “Ob effektivnom range konechnomernykh priblizhenii beskonechnomernoi lineinoi modeli izmereniya”, Matem. modelirovanie, 10:4 (1998), 33–45 | MR
[5] Serdobolskaya M. L., “Ob effektivnom range beskonechnomernoi lineinoi modeli izmereniya”, Vestn. MGU. Ser 3. Fiz. astron., 2000, no. 5, 5–8
[6] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Izd-vo inostr. lit., M., 1954
[7] Aziz R. A., “Interatomic potentials for rare gasses: pure and mixed interaction”, Inert Gases, Ch. 2, Springer, Berlin, 1984
[8] Hinde R. J., Berry R. S., “Chaotic dynamics in small inert gas clusters: The influence of potential energy saddles”, J. Chem. Phys., 99:4 (1993), 2942–2963 | DOI
[9] Jellinek J. J., Jasien P. G., The structure of small molecules and ions, Plenum Publ. Corp., New York, 1988, 39–47
[10] Belega E. D., Elyutin P. V., Trubnikov D. N., Shvilkina L. B., “Phase space structure of rotating trimers of nobel gas atoms”, Physics-Doclady, 42 (1997), 750–753
[11] Belega E. D., Trubnikov D. N., Lohr L. L., “The effect of rotation on the internal dynamics and phase space structure of rare gas trimers”, Phys. Rev. A, 63 (2001), 043203, 6 pp. | DOI
[12] Berry R. S., “Many dimensional potential surfaces: what they imply and how to think about them”, Internat. J. Quant. Chem., 58:6 (1996), 657–670 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI