@article{ZVMMF_2002_42_12_a1,
author = {Kh. D. Ikramov},
title = {A linear-time algorithm for verifying the copositivity of an acyclic matrix},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1771--1773},
year = {2002},
volume = {42},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a1/}
}
TY - JOUR AU - Kh. D. Ikramov TI - A linear-time algorithm for verifying the copositivity of an acyclic matrix JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1771 EP - 1773 VL - 42 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a1/ LA - ru ID - ZVMMF_2002_42_12_a1 ER -
Kh. D. Ikramov. A linear-time algorithm for verifying the copositivity of an acyclic matrix. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 12, pp. 1771-1773. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_12_a1/
[1] Murty K. G., Kabadi S. N., “Some NP-complete problems in quadratic and nonlinear programming”, Math. Program., 39 (1987), 117–129 | DOI | MR | Zbl
[2] Bomze L. M., “Linear-time copositivity detection for tridiagonal matrices and extension to block-tridiagonality”, SIAM J. Matrix Analys. Appl., 21:3 (2000), 840–848 | DOI | MR | Zbl
[3] Parter S. V., “The use of linear graphs in Gauss elimination”, SIAM Rev., 3 (1961), 119–130 | DOI | MR | Zbl
[4] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh polozhitelno opredelennykh sistem, Mir, M., 1984 | MR
[5] Li P., Feng Y. Y., “Criteria for copositive matrices of order four”, Linear Algebra Appl., 194 (1993), 109–124 | DOI | MR | Zbl
[6] Bomze I. M., “Remarks on the recursive structure of copositivity”, J. Inform. Optimizat. Sci., 8 (1987), 243–260 | MR | Zbl
[7] Bomze I. M., “Block pivoting and shortcut strategies for detecting copositivity”, Linear Algebra Appl., 248 (1996), 161–184 | DOI | MR | Zbl