A regularized continuous projection method for constrained minimization problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 11, pp. 1646-1656 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2002_42_11_a4,
     author = {V. G. Malinov},
     title = {A regularized continuous projection method for constrained minimization problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1646--1656},
     year = {2002},
     volume = {42},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a4/}
}
TY  - JOUR
AU  - V. G. Malinov
TI  - A regularized continuous projection method for constrained minimization problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2002
SP  - 1646
EP  - 1656
VL  - 42
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a4/
LA  - ru
ID  - ZVMMF_2002_42_11_a4
ER  - 
%0 Journal Article
%A V. G. Malinov
%T A regularized continuous projection method for constrained minimization problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2002
%P 1646-1656
%V 42
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a4/
%G ru
%F ZVMMF_2002_42_11_a4
V. G. Malinov. A regularized continuous projection method for constrained minimization problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 11, pp. 1646-1656. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a4/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[2] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[3] Antipin A. S., “Ob edinom podkhode k metodam resheniya nekorrektnykh ekstremalnykh zadach”, Vestn. MGU. Ser. 1. Matem. i mekhan., 1973, no. 2, 60–67 | MR

[4] Antipin A. S., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipa proektirovaniya”, Vopr. kibernetiki. Vychisl. voprosy analiza bolshikh sistem, Nauchn. sovet po kompleksnoi probleme “Kibernetika” AN SSSR, M., 1989, 5–43 | MR

[5] Antipin A. S., Nedich A., “Nepreryvnyi metod linearizatsii vtorogo poryadka dlya zadach vypuklogo programmirovaniya”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1996, no. 2, 3–15 | MR

[6] Nedich A., “Regulyarizovannyi nepreryvnyi metod proektsii gradienta dlya zadach minimizatsii s netochnymi iskhodnymi dannymi”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1994, no. 1, 3–10 | MR | Zbl

[7] Vasilev F. P., Nedich A., “Regulyarizovannyi nepreryvnyi metod proektsii gradienta vtorogo poryadka”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1994, no. 2, 3–11 | MR

[8] Vasilev F. P., Amochkina T. V., Nedich A., “Ob odnom regulyarizovannom variante nepreryvnogo metoda proektsii gradienta vtorogo poryadka”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1995, no. 3, 39–46 | MR

[9] Vasilev F. P., Nedich A., “Regulyarizovannyi nepreryvnyi metod proektsii gradienta tretego poryadka”, Differents. ur-niya, 30:12 (1994), 2033–2042 | MR

[10] Vasiljev F. P., Nedič A., “A regularized continuous projection gradient method of the fourth order”, Yugoslav J. Operat. Res., 5:2 (1995), 195–209 | MR | Zbl

[11] Vasilev F. P., Nedich A., Yachimovich M. I., “Regulyarizovannyi nepreryvnyi metod linearizatsii vtorogo poryadka dlya zadach minimizatsii s netochnymi iskhodnymi dannymi”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1996, no. 3, 5–12 | MR

[12] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[13] Kovacs M., Vasil'ev F. P., “On the convergence rate of the continuous version of the regularized gradient method”, Optimization., 18:5 (1987), 689–696 | DOI | MR | Zbl

[14] Vasilev F. P., “O regulyarizatsii neustoichivykh zadach minimizatsii”, Tr. MIAN SSSR, 185, M., 1988, 60–65

[15] Antipin A. S., Upravlyaemye metody resheniya pryamykh i obratnykh zadach optimizatsii, Dis. $\dots$ dokt. fiz.-matem. nauk, In-t problem kibernetiki, M., 1991, 236 pp.

[16] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Nauka, M., 1978

[17] Malinov V. G., “O nepreryvnom proektsionnom metode minimizatsii vtorogo poryadka”, Metody optimizatsii i ikh prilozh., Tr. XII Baikalskoi mezhdunar. konf. (Irkutsk, Baikal, 24 iyunya–1 iyulya 2001 g.), v. 1A, Matem. programmirovanie, Irkutsk, 2001, 21–26

[18] Malinov V. G., “O regulyarizovannom dvukhshagovom proektsionnom metode dlya zadach minimizatsii s ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 40:1 (2000), 65–71 | MR | Zbl

[19] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR