@article{ZVMMF_2002_42_11_a2,
author = {N. N. Osipov},
title = {Construction of sequences of the rank~$1$ lattice cubature formulas that are exact on trigonometric polynomials},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1627--1635},
year = {2002},
volume = {42},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a2/}
}
TY - JOUR AU - N. N. Osipov TI - Construction of sequences of the rank $1$ lattice cubature formulas that are exact on trigonometric polynomials JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1627 EP - 1635 VL - 42 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a2/ LA - ru ID - ZVMMF_2002_42_11_a2 ER -
%0 Journal Article %A N. N. Osipov %T Construction of sequences of the rank $1$ lattice cubature formulas that are exact on trigonometric polynomials %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1627-1635 %V 42 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a2/ %G ru %F ZVMMF_2002_42_11_a2
N. N. Osipov. Construction of sequences of the rank $1$ lattice cubature formulas that are exact on trigonometric polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 11, pp. 1627-1635. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a2/
[1] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, 14, Izd-vo LGU, L., 1985, 15–23 | MR
[2] Noskov M. V., “Formuly priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, 5, Izd-vo LGU, L., 1988, 19–22 | MR
[3] Cools R., Lvness J. N., “Three- and four-dimensional $K$-optimal lattice rules of moderate trigonometric degree”, Math. Comput., 70 (2001), 1549–1567 | DOI | MR | Zbl
[4] Kashkin V. B., Noskov M. B., Osipov H. H., “Variant diskretnogo preobrazovaniya Fure s uzlami na parallelepipedalnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 41:3 (2001), 355–359 | MR | Zbl
[5] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya funktsii trekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 28:10 (1988), 1583–1586 | MR
[6] Noskov M. V., Semenova A. R., “Kubaturnye formuly povyshennoi trigonometricheskoi tochnosti dlya periodicheskikh funktsii chetyrekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 5–11 | MR | Zbl
[7] Noskov M. V., Semenova A. R., “O seriyakh kubaturnykh formul povyshennoi trigonometricheskoi tochnosti”, Kubaturnye f-ly i ikh prilozh., KGTU, Krasnoyarsk, 1994, 68–78
[8] Semenova A. N., “Serii kubaturnykh formul dlya periodicheskikh formul pyati peremennykh”, Kompleksnyi analiz, differents. ur-niya, chisl. metody i prilozh., v. V, Chisl. metody, IM s VTs RAN, Ufa, 1996, 137–146
[9] Niederreiter H., Random number generation and Quasi-Monte Carlo methods, SIAM, Philadelphia, 1992 | MR | Zbl
[10] Frolov K. K., “O svyazi kvadraturnykh formul i podreshetok reshetki tselykh vektorov”, Dokl. AN SSSR, 232:1 (1977), 40–43 | MR | Zbl
[11] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR
[12] Sloan I. H., Kachoyan P. J., “Lattice methods for multiple integration: theory, error analysis and examples”, SIAM J. Numer. Analys., 24 (1987), 116–128 | DOI | MR | Zbl
[13] Lyness J. N., “An introdiction to lattice rules and their generator matrices”, IMA J. Numer. Analys., 9 (1989), 405–419 | DOI | MR | Zbl
[14] Sloan I. H., Lyness J. N., “The representation of lattice quadrature rules as multiple sums”, Math. Comput., 52 (1989), 81–94 | DOI | MR | Zbl
[15] Lyness J. N., Keast P., “Application of the Smith normal form to the structure of lattice rules”, SIAM J. Matrix Analys. Appl., 16:1 (1995), 218–231 | DOI | MR | Zbl
[16] Korobov H. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl
[17] Minkowski H., “Dichteste gitterforming Lagerung kongruenter Korper”, Nachr. Koning Ges. Wiss. Göttingen, 1904, 311–355 | Zbl
[18] Osipov H. H., Petrov A. V., “Serii reshetchatykh kubaturnykh formul, tochnykh na trigonometricheskikh mnogochlenakh ot trekh peremennykh”, Kubaturnye f-ly i ikh prilozh., VI Mezhdunar. seminar-soveschanie, IMVTs UfNTs RAN, BGPU, Ufa, 2001, 91–95 | MR
[19] Noskov M. V., Osipov N. N., “Serii kubaturnykh formul, tochnykh na trigonometricheskikh mnogochlenakh”, Kubaturnye f-ly i ikh prilozh., Materialy V Mezhdunar. seminara-soveschaniya, KGTU, Krasnoyarsk, 2000, 132–136
[20] Proskuryakov I. V., Sbornik zadach po lineinoi algebre, Nauka, M., 1984 | Zbl