@article{ZVMMF_2002_42_11_a14,
author = {V. K. Bulgakov and I. I. Potapov},
title = {Comparative analysis of the second order accurate finite element approximation for the {Stokes} problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1756--1760},
year = {2002},
volume = {42},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a14/}
}
TY - JOUR AU - V. K. Bulgakov AU - I. I. Potapov TI - Comparative analysis of the second order accurate finite element approximation for the Stokes problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1756 EP - 1760 VL - 42 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a14/ LA - ru ID - ZVMMF_2002_42_11_a14 ER -
%0 Journal Article %A V. K. Bulgakov %A I. I. Potapov %T Comparative analysis of the second order accurate finite element approximation for the Stokes problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1756-1760 %V 42 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a14/ %G ru %F ZVMMF_2002_42_11_a14
V. K. Bulgakov; I. I. Potapov. Comparative analysis of the second order accurate finite element approximation for the Stokes problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 11, pp. 1756-1760. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_11_a14/
[1] Turek S., Efficient solvers for incompressible flow problems: an algorithmic approach in view of computational aspects, LNCSE, 6, Springer, Berlin, Heidelberg, 1999 | MR | Zbl
[2] Temam P., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl
[3] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR
[4] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, New York, 1991 | MR | Zbl
[5] Bercovier M., Engelman M., “Finite element for the numerical solution of viscous incompressible flows”, J. Comput. Phys., 36 (1979), 181–201 | DOI | MR
[6] Dyakonov E. G., “Otsenki vychislitelnoi raboty v nekotorykh proektsionno-setochnykh metodakh”, Variatsionno-raznostnye metody v matem. fiz., OVM AN SSSR, M., 1984
[7] Arnold D. N., Brezzi F., Fortin M., “A stable finite element for the Stokes equations”, Calcolo, 21 (1984), 334–337 | DOI | MR
[8] Bulgakov B. K., Lipanov A. M., Chekhonin K. A., Ivanov O. M., “Modelirovanie techenii nenyutonovskikh zhidkostei, imeyuschikh predel tekuchesti”, Mekhan. kompozitnykh materialov, 1988, no. 6, 1112–1116
[9] Bulgakov V. K., Chekhonin K. A., “Gidrodinamika techenii polimerizuyuscheisya nelineino-vyazkoplastichnoi zhidkosti, imeyuschei svobodnuyu poverkhnost”, Inzh.-fiz. zhurnal, 57:4 (1989), 577–583 | MR
[10] Chekhonin K. A., Sukhinin P. A., Potapov I. I., “Issledovanie vliyaniya granichnykh uslovii na linii trekhfaznogo kontakta na evolyutsiyu svobodnoi poverkhnosti pri dvizhenii zhidkosti Shulmana”, Matem. modelirovanie, 3, KhGTU, Khabarovsk, 1997, 49–61
[11] Dauge M., “Stationary Stokes and Navier–Stokes system on two- or three-dimensional domains with corners. Part I: Linearized equations”, SIAM J. Math. Analys., 20:1 (1989), 74–97 | DOI | MR | Zbl
[12] Mitsoulis E., “The numerical simulation of boger fluids: A viscometric approximation approach”, Polymer Engng and Sci., 26:22 (1986), 112–128
[13] Bulgakov V. K., Potapov I. M., Metod konechnykh elementov v zadachakh gidrodinamiki, KhGTU, Khabarovsk, 1999
[14] Pissanetski S., Tekhnologiya razrezhennykh matrits, Mir, M., 1988 | MR
[15] Fletcher K., Vychislitelnye metody v dinamike zhidkosti, v. 1, Mir, M., 1991
[16] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers?”, Rev. Francoise Automat. Informat. Rech. Operat. Ser. Rouge Analys. Numer., 8:2 (1974), 129–151 | MR | Zbl