@article{ZVMMF_2002_42_10_a6,
author = {O. Yu. Milyukova},
title = {Parallel versions of the alternating triangular method for solving three-dimensional elliptic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1531--1541},
year = {2002},
volume = {42},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_10_a6/}
}
TY - JOUR AU - O. Yu. Milyukova TI - Parallel versions of the alternating triangular method for solving three-dimensional elliptic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2002 SP - 1531 EP - 1541 VL - 42 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_10_a6/ LA - ru ID - ZVMMF_2002_42_10_a6 ER -
%0 Journal Article %A O. Yu. Milyukova %T Parallel versions of the alternating triangular method for solving three-dimensional elliptic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2002 %P 1531-1541 %V 42 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_10_a6/ %G ru %F ZVMMF_2002_42_10_a6
O. Yu. Milyukova. Parallel versions of the alternating triangular method for solving three-dimensional elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 42 (2002) no. 10, pp. 1531-1541. http://geodesic.mathdoc.fr/item/ZVMMF_2002_42_10_a6/
[1] Axelsson O., “A class of iterative methods for finite element equations”, Comput. Meth. Appl. Mech. Engng., 9 (1976), 123–137 | DOI | MR | Zbl
[2] Concus P., Golub G. H., O'Leary D. P., “A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations”, Sparse Matrix Comput., Acad. Press., New York, 1976, 309–332 ; Reprinted Studies in Numer. Analys. Studies in Math. Assoc. Amer., 25 (1984), 178–198 | MR | MR
[3] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[5] Kucherov A. B., Nikolaev E. S., “Poperemenno-treugolnyi iteratsionnyi metod resheniya setochnykh ellipticheskikh uravnenii v pryamougolnike”, Zh. vychisl. matem. i matem. fiz., 16:5 (1976), 1164–1174 | MR | Zbl
[6] Kucherov A. B., Nikolaev E. S., “Poperemenno-treugolnyi iteratsionnyi metod resheniya setochnykh ellipticheskikh uravnenii v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 17:3 (1977), 664–675 | MR | Zbl
[7] Meijerink J. A., Van der Vorst H. A., “An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix”, Math. Comput., 31:137 (1977), 148–162 | MR | Zbl
[8] Gustafsson I., “A class of first order factorization methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl
[9] Axelsson O., “A generalized SSOR method”, BIT, 13 (1972), 443–467 | DOI | MR
[10] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR
[11] Duff I. S., Meurant G. A., “The effect of ordering on preconditioned conjugate gradients”, BIT, 29 (1989), 635–657 | DOI | MR | Zbl
[12] Notay Y., “An efficient parallel discrete PDE solver”, Parallel Comput., 21 (1995), 1725–1748 | DOI | MR
[13] Milyukova O. Yu., Chetverushkin B. N., “Parallelnyi variant poperemenno-treugolnogo metoda”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 228–238 | MR | Zbl
[14] Milyukova O. Yu., “Parallelnyi variant obobschennogo poperemenno-treugolnogo metoda dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2002–2012 | MR | Zbl
[15] Milyukova O. Yu., “Parallelnyi iteratsionnyi metod s faktorizovannoi matritsei predobuslovlivaniya dlya resheniya ellipticheskikh uravnenii”, Differents. ur-niya, 36:7 (2000), 953–962 | MR | Zbl
[16] Stotland S. A., Ortega J. M., “Ordering for parallel conjugate gradient preconditioners”, SIAM J. Sci. Comput., 18:3 (1997), 854–868 | DOI | MR | Zbl