@article{ZVMMF_2001_41_9_a12,
author = {V. V. Dyakin and V. Ya. Raevskii},
title = {Analysis of a system of electrodynamic integro-differential equations with constant medium parameters},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1416--1421},
year = {2001},
volume = {41},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_9_a12/}
}
TY - JOUR AU - V. V. Dyakin AU - V. Ya. Raevskii TI - Analysis of a system of electrodynamic integro-differential equations with constant medium parameters JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 1416 EP - 1421 VL - 41 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_9_a12/ LA - ru ID - ZVMMF_2001_41_9_a12 ER -
%0 Journal Article %A V. V. Dyakin %A V. Ya. Raevskii %T Analysis of a system of electrodynamic integro-differential equations with constant medium parameters %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 1416-1421 %V 41 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_9_a12/ %G ru %F ZVMMF_2001_41_9_a12
V. V. Dyakin; V. Ya. Raevskii. Analysis of a system of electrodynamic integro-differential equations with constant medium parameters. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 9, pp. 1416-1421. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_9_a12/
[1] Dyakin V. V., Raevskii V. Ya., “Pryamaya i obratnaya zadachi klassicheskoi elektrodinamiki”, Defektoskopiya, 1996, no. 10, 31–39
[2] Samokhin A. B., “Difraktsiya elektromagnitnykh voln na lokalno-neodnorodnom tele i singulyarnye integralnye uravneniya”, Zh. vychisl. matem. i matem. fiz., 32:5 (1992), 772–787 | MR | Zbl
[3] Khizhnyak N. A., “Funktsiya Grina uravnenii Maksvella dlya neodnorodnykh sred”, Zh. tekhn. fiz., 28:7 (1958), 1592–1610
[4] Dyakin V. V., Raevskii V. Ya., “O pryamoi i obratnoi zadache elektrodinamiki”, Zh. vychisl. matem. i matem. fiz., 40:4 (2000), 598–605 | MR | Zbl
[5] Samokhin A. B., “Iteratsionnyi metod dlya integralnykh uravnenii zadach rasseyaniya na trekhmernom prozrachnom tele”, Differents. ur-niya, 30:12 (1994), 2162–2174 | MR | Zbl
[6] Samokhin A. B., “Issledovanie zadach difraktsii elektromagnitnykh voln v lokalno-neodnorodnykh sredakh”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 107–121 | MR
[7] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, Dop. k kn.: Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR
[8] Bykhovskii E. B., Smirnov N. V., “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Tr. MIAN SSSR, 59, M., 1960, 5–36 | MR
[9] Friedman M. J., “Mathematical study of the nonlinear singular integral magnetic field equation. 3”, SIAM J. Math. Analys., 12:4 (1981), 536–540 | DOI | MR | Zbl
[10] Temam P., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl
[11] Dzhuraev A. D., Metod singulyarnykh integralnykh uravnenii, Nauka, M., 1987 | MR
[12] Berezovskii A. A., Plotnitskii T. A., “O razreshimosti nelineinykh kraevykh zadach elektrodinamiki provodyaschikh sred”, Kraevye zadachi elektrodinamiki provodyaschikh sred, In-t matem. AN USSR, Kiev, 1976, 139–148 | MR
[13] Kirsch A., “Surface gradients and continuity properties for some integral operators in classical scattering theory”, Math. Methods Appl. Sci., 11 (1989), 789–804 | DOI | MR | Zbl