@article{ZVMMF_2001_41_9_a10,
author = {A. M. Voloshchenko},
title = {KP${}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in a two-dimensional geometry},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1379--1398},
year = {2001},
volume = {41},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_9_a10/}
}
TY - JOUR
AU - A. M. Voloshchenko
TI - KP${}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in a two-dimensional geometry
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2001
SP - 1379
EP - 1398
VL - 41
IS - 9
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_9_a10/
LA - ru
ID - ZVMMF_2001_41_9_a10
ER -
%0 Journal Article
%A A. M. Voloshchenko
%T KP${}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in a two-dimensional geometry
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 1379-1398
%V 41
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_9_a10/
%G ru
%F ZVMMF_2001_41_9_a10
A. M. Voloshchenko. KP${}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in a two-dimensional geometry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 9, pp. 1379-1398. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_9_a10/
[1] Vorobev Yu. V., Metod momentov v prikladnoi matematike, Fizmatgiz, M., 1958 | MR
[2] Morozov V. N., “O reshenii kineticheskikh uravnenii s pomoschyu $S_n$ metoda”, Teoriya i metody rascheta yadernykh reaktorov, Gosatomizdat, M., 1962, 91–117
[3] Kopp H. J., “Synthetic method solution of the transport equation”, Nucl. Sci. and Engng., 17:1 (1963), 65–74
[4] Lebedev V. I., “KR-metod iteratsii dlya kineticheskogo uravneniya”, Materialy Soveschaniya po matem. metodam resheniya zadach yadernoi fiz. (Dubna, 17–20 noyabrya 1964), 93–96
[5] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR
[6] Morel J. E., “A synthetic acceleration method for discrete-ordinates calculations with highly anisotropic scattering”, Nucl. Sci. and Engng., 82:1 (1982), 34–46 | MR
[7] Alcouffe R. E., “Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinates equations”, Nucl. Sci. and Engng., 64:2 (1977), 344–355
[8] Larsen E. W., “Diffusion-synthetic acceleration methods for discrete-ordinates problems”, Transp. Theory and Statist. Phys., 13:1–2 (1984), 107–126 | DOI | MR
[9] Averin A. V., Voloschenko A. M., “Consistent P${}_1$ synthetic acceleration method for outer iterations”, Transp. Theory and Statist. Phys., 23:5 (1994), 701–730 | DOI | MR | Zbl
[10] Averin A. V., Voloschenko A. M., “Consistent P${}_1$ synthetic acceleration method for weighted diamond scheme in $r$, $z$ geometry”, Internat. Symp. Numer. Transport Theory (M., 1992), 45–48
[11] Voloschenko A. M., Voronkov A. B., Sychugova E. P., Soglasovannaya P${}_1$SA skhema uskoreniya vnutrennikh i vneshnikh iteratsii dlya uravneniya perenosa neitronov i fotonov v odnomernykh geometriyakh v pakete REAKTOR, Preprint No 2, IPMatem. RAN, M., 1996
[12] Voloschenko A. M., “Completely consistent P${}_1$ synthetic acceleration scheme for charged-particle transport calculations”, Proc. 1996 Top. Meet. Radiat. Protection and Shielding (April 21–25. No. Falmouth, USA, 1996), 1, 408–415
[13] Voloschenko A. M., Polnostyu soglasovannaya P${}_1$ sinteticheskaya skhema uskoreniya vnutrennikh iteratsii dlya zadach perenosa zaryazhennogo izlucheniya, Preprint No 39, IPMatem. RAN, M., 1998
[14] Troschiev V. E., “Reshenie kineticheskogo uravneniya i uravneniya kvazidiffuzii po soglasovannym raznostnym skhemam”, Chisl. metody resheniya zadach matem. fiz., Nauka, M., 1966, 177–185
[15] Azmy Y. Y., Larsen E. W., “Fourier analysis of the diffusion synthetic acceleration method for weighted diamond-differencing schemes in cartesian geometries”, Nucl. Sci. and Engng., 95:2 (1987), 106–115
[16] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1078–1087 | MR
[17] Aristova E. N., Goldin V. Ya., Kolpakov A. V., “Metodika rascheta perenosa izlucheniya v tele vrascheniya”, Matem. modelirovanie, 9:3 (1997), 91–108 | MR | Zbl
[18] Valougeorgis D., “Boundary treatment of the diffusion synthetic acceleration method for fixed-source discrete-ordinates problems in $x-y$ geometry”, Nucl. Sci. and Engng., 100:2 (1988), 142–148
[19] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[20] Godunov S. K., Ryabenkii B. C., Raznostnye skhemy, Nauka, M., 1977
[21] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994
[22] Khalil H., “A nodal diffusion technique for synthetic acceleration of nodal $S_n$ calculations”, Nucl. Sci. and Engng., 90:3 (1985), 263–280 | DOI
[23] Evdokimov V. V., Shagaliev P. M., “Soglasovannyi metod uskoreniya iteratsii pri reshenii dvumernykh zadach perenosa na neortogonalnykh setkakh po skhemam tipa DS${}_n$ metoda”, Voprosy atomnoi nauki i tekhn. Ser. Matem. modelirovanie fiz. protsessov, 1994, no. 3, 11–17 | MR
[24] Bass L. P., Voloschenko A. M., Germogenova T. A., Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPMatem. AN SSSR, M., 1986
[25] Morel J. E., Dendy J. E., Jr., Wareing T. A., “Diffusion-accelerated solution of the two-dimensional S${}_n$ equations with bilinear-discontinuous differencing”, Nucl. Sci. and Engng., 115:3 (1993), 304–319
[26] Ramone G. L., Adams M. L., Nowak P. F., “A transport synthetic acceleration method for transport iterations”, Nucl. Sci. and Engng., 125:3 (1997), 257–283
[27] Voloschenko A. M., “Consistent P${}_1$ synthetic acceleration scheme for transport equation in two-dimensional $r$, $z$ geometry”, Proc. Joint Internat. Conf. on Math. Meth. and Supercomp. Nucl. Appl. (October 6–10, Saratoga Springs, USA, 1997), 1, 364–373
[28] Voloschenko A. M., P${}_1$ sinteticheskaya skhema uskoreniya vnutrennikh iteratsii dlya uravneniya perenosa v dvumernoi geometrii, soglasovannaya so vzveshennoi almaznoi skhemoi, Preprint No 8, IPMatem. RAN, M., 1998
[29] Voloschenko A. M., “Experience in the use of the consistent P${}_1$ synthetic acceleration scheme for transport equation in 2D geometry”, Proc. Internat. Conf. on Math. and Comput., Reactor Phys. and Environ. Analys. in Nucl. Appl. (27–30 September, Madrid, Spain, 1999), 1, 104–113
[30] Voloschenko A. M., Germogenova T. A., “Numerical solution of the time-dependent transport equation with pulsed sources”, Transp. Theory and Statist. Phys., 23:6 (1994), 845–869 | DOI | MR | Zbl
[31] Adams M. L., Wareing T. A., “Diffusion-synthetic acceleration given anisotropic scattering, general quadratures, and multidimensions”, Trans. Amer. Nucl. Soc., 68A (1993), 203–204
[32] Lorence L. J., Morel J. E., Larsen E. W., “An S${}_2$ synthetic acceleration method for the one-dimensional S${}_n$ equations with linear discontinuous spatial differencing”, Nucl. Sci. and Engng., 101:2 (1989), 341–351
[33] Voloschenko A. M., “Geometrical interpretation of family of weighted nodal schemes and adaptive positive approximations for transport equation”, Proc. Joint Internat. Conf. on Math. Meth. and Supercomput. for Nucl. Appl. (October 6–10, Saratoga Springs, USA, 1997), 2, 1517–1526