On the convergence of difference schemes for the third boundary value problem of elasticity theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 8, pp. 1242-1249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_8_a9,
     author = {G. K. Berikelashvili},
     title = {On the convergence of difference schemes for the third boundary value problem of elasticity theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1242--1249},
     year = {2001},
     volume = {41},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a9/}
}
TY  - JOUR
AU  - G. K. Berikelashvili
TI  - On the convergence of difference schemes for the third boundary value problem of elasticity theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 1242
EP  - 1249
VL  - 41
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a9/
LA  - ru
ID  - ZVMMF_2001_41_8_a9
ER  - 
%0 Journal Article
%A G. K. Berikelashvili
%T On the convergence of difference schemes for the third boundary value problem of elasticity theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 1242-1249
%V 41
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a9/
%G ru
%F ZVMMF_2001_41_8_a9
G. K. Berikelashvili. On the convergence of difference schemes for the third boundary value problem of elasticity theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 8, pp. 1242-1249. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a9/

[1] Lazarov R. D., Makarov V. L., Samarskii A. A., “Primenenie tochnykh raznostnykh skhem dlya postroeniya i issledovaniya raznostnykh skhem na obobschennykh resheniyakh”, Matem. sb., 117:4 (1982), 469–480 | MR | Zbl

[2] Belukhina I. G., “Raznostnye skhemy dlya resheniya nekotorykh staticheskikh zadach teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 8:4 (1968), 808–823

[3] Makarov V. L., Kalinin V. M., “Soglasovannye otsenki skorosti skhodimosti raznostnykh skhem v $L_2$-norme dlya tretei kraevoi zadachi teorii uprugosti”, Differents. ur-niya, 22:7 (1986), 1265–1268 | MR | Zbl

[4] Berikelashvili G. K., “O skhodimosti raznostnogo resheniya tretei kraevoi zadachi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 310–314 | MR | Zbl

[5] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987

[6] Dupont T., Scott R., “Polynomial approximation of functions in Sobolev spaces”, Math. Comput., 34 (1980), 441–463 | DOI | MR | Zbl

[7] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl

[9] Gavrilyuk I. P., Prikazchikov V. G., Khimich A. N., “Tochnost resheniya raznostnoi kraevoi zadachi dlya ellipticheskogo operatora chetvertogo poryadka so smeshannymi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 26:12 (1986), 1821–1830 | MR | Zbl

[10] Jovanović B., “Multipliers in Sobolev spaces and exact convergence rate estimates for the finite-difference schemes”, Banach center publ., 29, 1994, 165–173 | MR | Zbl