@article{ZVMMF_2001_41_8_a9,
author = {G. K. Berikelashvili},
title = {On the convergence of difference schemes for the third boundary value problem of elasticity theory},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1242--1249},
year = {2001},
volume = {41},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a9/}
}
TY - JOUR AU - G. K. Berikelashvili TI - On the convergence of difference schemes for the third boundary value problem of elasticity theory JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 1242 EP - 1249 VL - 41 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a9/ LA - ru ID - ZVMMF_2001_41_8_a9 ER -
%0 Journal Article %A G. K. Berikelashvili %T On the convergence of difference schemes for the third boundary value problem of elasticity theory %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 1242-1249 %V 41 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a9/ %G ru %F ZVMMF_2001_41_8_a9
G. K. Berikelashvili. On the convergence of difference schemes for the third boundary value problem of elasticity theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 8, pp. 1242-1249. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a9/
[1] Lazarov R. D., Makarov V. L., Samarskii A. A., “Primenenie tochnykh raznostnykh skhem dlya postroeniya i issledovaniya raznostnykh skhem na obobschennykh resheniyakh”, Matem. sb., 117:4 (1982), 469–480 | MR | Zbl
[2] Belukhina I. G., “Raznostnye skhemy dlya resheniya nekotorykh staticheskikh zadach teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 8:4 (1968), 808–823
[3] Makarov V. L., Kalinin V. M., “Soglasovannye otsenki skorosti skhodimosti raznostnykh skhem v $L_2$-norme dlya tretei kraevoi zadachi teorii uprugosti”, Differents. ur-niya, 22:7 (1986), 1265–1268 | MR | Zbl
[4] Berikelashvili G. K., “O skhodimosti raznostnogo resheniya tretei kraevoi zadachi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 310–314 | MR | Zbl
[5] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987
[6] Dupont T., Scott R., “Polynomial approximation of functions in Sobolev spaces”, Math. Comput., 34 (1980), 441–463 | DOI | MR | Zbl
[7] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl
[9] Gavrilyuk I. P., Prikazchikov V. G., Khimich A. N., “Tochnost resheniya raznostnoi kraevoi zadachi dlya ellipticheskogo operatora chetvertogo poryadka so smeshannymi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 26:12 (1986), 1821–1830 | MR | Zbl
[10] Jovanović B., “Multipliers in Sobolev spaces and exact convergence rate estimates for the finite-difference schemes”, Banach center publ., 29, 1994, 165–173 | MR | Zbl