@article{ZVMMF_2001_41_8_a6,
author = {A. S. Lozinskii},
title = {Finite-element realization of iterative processes with splitting of boundary conditions for a {Stokes-type} system in nonconcentric annuli},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1203--1216},
year = {2001},
volume = {41},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a6/}
}
TY - JOUR AU - A. S. Lozinskii TI - Finite-element realization of iterative processes with splitting of boundary conditions for a Stokes-type system in nonconcentric annuli JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 1203 EP - 1216 VL - 41 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a6/ LA - ru ID - ZVMMF_2001_41_8_a6 ER -
%0 Journal Article %A A. S. Lozinskii %T Finite-element realization of iterative processes with splitting of boundary conditions for a Stokes-type system in nonconcentric annuli %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 1203-1216 %V 41 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a6/ %G ru %F ZVMMF_2001_41_8_a6
A. S. Lozinskii. Finite-element realization of iterative processes with splitting of boundary conditions for a Stokes-type system in nonconcentric annuli. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 8, pp. 1203-1216. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_8_a6/
[1] Cahouet J., Chabart J., “Some fast 3D finite element solvers for the generalized Stokes problem”, Int. J. Numer. Methods Fluids, 8 (1988), 869–895 | DOI | MR
[2] Braess D., Sarazin R., “An efficient smoother for the Stokes problem”, Appl. Numer. Math., 23 (1997), 3–19 | DOI | MR | Zbl
[3] Kobelkov G. M., Olshanskii M. A., “Effective preconditioning of Uzawa type schemes for the generalized Stokes problem”, Numer. Math., 86 (2000), 443–470 | DOI | MR | Zbl
[4] Girault V., Raviart P., Finite element approximation of the Navier-Stokes equations, Lect. Notes Math., 749, Springer, Berlin, 1979 | MR | Zbl
[5] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s rasschepleniem granichnykh uslovii dlya mnogomernoi sistemy tipa Stoksa. Periodicheskie “techeniya” mezhdu parallelnymi stenkami”, Dokl. RAN, 325:5 (1992), 926–931 | MR
[6] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s nepolnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:4 (1994), 101–150 | MR
[7] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s polnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:9 (1994), 109–138 | MR
[8] Paltsev B. V., Chechel I. I., “Algoritmy chislennykh realizatsii na osnove bilineinykh konechnykh elementov iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 37:7 (1997), 799–815 | MR
[9] Paltsev B. V., Chechel I. I., “O realnykh kachestvakh bilineinykh konechno-elementnykh realizatsii metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 247–261 | MR
[10] Paltsev B. V., Chechel I. I., “O nekotorykh sposobakh povysheniya skorosti skhodimosti na vysokikh garmonikakh bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 956–970 | MR
[11] Paltsev B. V., “O metodakh s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v oblastyakh s krugovoi simmetriei”, Tezisy dokl. Mezhdunar. konf., posvyaschennoi 75-letiyu chl.-korr. RAN, prof. L. D. Kudryavtseva, M., 1998, 124–128
[12] Lozinskii A. S., “Ob uskorenii konechno-elementnykh realizatsii iteratsionnykh protsessov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v sloe s usloviem periodichnosti”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1339–1361 | MR
[13] Agoshkov V. I., Lebedev V. I., “Operatory Puankare-Steklova i metody razdeleniya oblasti v variatsionnykh zadachakh”, Vychisl. protsessy i sistemy, 2, Nauka, M., 1985, 173–226 | MR
[14] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.–L., 1952 | MR | Zbl
[15] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matem. nauk, 28:2 (1973), 121–128 | MR
[16] Mc Cormick S. F., Ruge J. N., “Multigrid methods for variational problems”, SIAM J. Numer. Analys., 19:5 (1982), 924–929 | DOI | MR