Construction of periodic solutions of assured accuracy for a quasilinear mathematical model by the model of small parameter
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 6, pp. 938-946 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_6_a9,
     author = {Kh. I. Botashev},
     title = {Construction of periodic solutions of assured accuracy for a quasilinear mathematical model by the model of small parameter},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {938--946},
     year = {2001},
     volume = {41},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a9/}
}
TY  - JOUR
AU  - Kh. I. Botashev
TI  - Construction of periodic solutions of assured accuracy for a quasilinear mathematical model by the model of small parameter
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 938
EP  - 946
VL  - 41
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a9/
LA  - ru
ID  - ZVMMF_2001_41_6_a9
ER  - 
%0 Journal Article
%A Kh. I. Botashev
%T Construction of periodic solutions of assured accuracy for a quasilinear mathematical model by the model of small parameter
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 938-946
%V 41
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a9/
%G ru
%F ZVMMF_2001_41_6_a9
Kh. I. Botashev. Construction of periodic solutions of assured accuracy for a quasilinear mathematical model by the model of small parameter. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 6, pp. 938-946. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a9/

[1] Botashev Kh. I., “O postroenii periodicheskikh reshenii s zadannoi tochnostyu metodom malogo parametra”, Zh. vychisl. matem. i matem. fiz., 38:5 (1998), 728–733 | MR | Zbl

[2] Botashev Kh. I., “Lokalizatsiya tochnykh reshenii dlya nelineinoi matematicheskoi modeli, soderzhaschei malyi parametr”, Informatsionnye tekhnologii v proektirovanii i proizvodstve, 2, M., 1998, 14–17

[3] Halanay A., Differential equations, stability, oscillations, time lags, Acad. Press, New York–London, 1966 | MR | Zbl

[4] Cesari L., “Functional analysis and periodic solutions of nonlinear differential equations”, Contributions Differential Equat., 1, no. 2, New York, 1963, 149–187 | MR | Zbl

[5] Cesari L., “Functional analysis and Galerkin's method”, Michigan Math. J., 11 (1964), 385–414 | DOI | MR | Zbl

[6] Urabe M., “Galerkin's procedure for nonlinear periodic systems”, Arch. Ration. Mech. and Analys., 20:2 (1965), 120–152 | MR | Zbl

[7] Urabe M., Reiter F., “Numerical computation of nonlinear forced oscillations by Galerkin's procedure”, J. Math. Analys. and Applic., 14:1 (1966), 107–140 | DOI | MR | Zbl

[8] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, Gostekhteorizdat, M., 1956