Three-point difference schemes of high accuracy order for systems of nonlinear ordinary differential equations of the second order
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 6, pp. 909-921 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_6_a7,
     author = {M. V. Kutniv},
     title = {Three-point difference schemes of high accuracy order for systems of nonlinear ordinary differential equations of the second order},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {909--921},
     year = {2001},
     volume = {41},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a7/}
}
TY  - JOUR
AU  - M. V. Kutniv
TI  - Three-point difference schemes of high accuracy order for systems of nonlinear ordinary differential equations of the second order
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 909
EP  - 921
VL  - 41
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a7/
LA  - ru
ID  - ZVMMF_2001_41_6_a7
ER  - 
%0 Journal Article
%A M. V. Kutniv
%T Three-point difference schemes of high accuracy order for systems of nonlinear ordinary differential equations of the second order
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 909-921
%V 41
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a7/
%G ru
%F ZVMMF_2001_41_6_a7
M. V. Kutniv. Three-point difference schemes of high accuracy order for systems of nonlinear ordinary differential equations of the second order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 6, pp. 909-921. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a7/

[1] Makarov V. L., Makarov I. L., Prikazchikov V. G., “Tochnye raznostnye skhemy i skhemy lyubogo poryadka tochnosti dlya sistem obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Differents. ur-niya, 15:7 (1979), 1194–1205 | MR | Zbl

[2] Makarov V. L., Guminskii V. V., “Tochnaya raznostnaya skhema vysokogo poryadka tochnosti dlya sistemy obyknovennykh differentsialnykh uravnenii vtorogo poryadka (nesamosopryazhennyi sluchai)”, Differents. ur-niya, 30:3 (1994), 493–502 | MR | Zbl

[3] Makarov V. L., Samarskii A. A., “Tochnye trekhtochechnye raznostnye skhemy dlya nelineinykh obyknovennykh differentsialnykh uravnenii 2-go poryadka i ikh realizatsiya”, Dokl. AN SSSR, 312:4 (1990), 795–800 | MR | Zbl

[4] Kutniv M. V., Makarov V. L., Samarskii A. A., “Tochnye trekhtochechnye raznostnye skhemy dlya nelineinykh obyknovennykh differentsialnykh uravnenii 2-go poryadka i ikh realizatsiya”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 45–60 | MR | Zbl

[5] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[6] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[7] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Nauka, M., 1987