@article{ZVMMF_2001_41_6_a6,
author = {A. A. Neznakhin and V. N. Ushakov},
title = {A discrete method for constructing an approximate viability kernel of a differential inclusion},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {895--908},
year = {2001},
volume = {41},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a6/}
}
TY - JOUR AU - A. A. Neznakhin AU - V. N. Ushakov TI - A discrete method for constructing an approximate viability kernel of a differential inclusion JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 895 EP - 908 VL - 41 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a6/ LA - ru ID - ZVMMF_2001_41_6_a6 ER -
%0 Journal Article %A A. A. Neznakhin %A V. N. Ushakov %T A discrete method for constructing an approximate viability kernel of a differential inclusion %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 895-908 %V 41 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a6/ %G ru %F ZVMMF_2001_41_6_a6
A. A. Neznakhin; V. N. Ushakov. A discrete method for constructing an approximate viability kernel of a differential inclusion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 6, pp. 895-908. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a6/
[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[2] Kurzhanskii A. B., Filippova T. F., “Differentsialnye vklyucheniya s fazovymi ogranicheniyami. Metod vozmuschenii”, Optimalnoe upravlenie i differents. ur-niya, Tr. MI RAN, 211, M., 1995, 304–315 | MR
[3] Filippova T. F., “Zadachi o vyzhivaemosti dlya differentsialnykh vklyuchenii”, Dis. ...dokt. fiz.-matem. nauk, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 1992, 266
[4] Nikolskii M. S., “Ob approksimatsii mnozhestva dostizhimosti dlya differentsialnogo vklyucheniya”, Vestn. MGU. Ser. Vychisl. matem. i kibernetika, 1987, no. 4, 31–34
[5] Aubin J.-P., Viability theory, Birkhäuser, Boston–Basel–Berlin, 1991 | MR | Zbl
[6] Frankowska H., Plaskacz S., Rzezuchowski T., “Theoremes de viabilite mesurables et requation d'Hamilton–Jacobi–Bellman”, C. r. Acad. sci. Paris. Ser. 1, 315 (1992), 131–134 | MR | Zbl
[7] Aubin J.-P., Clarke F., “Monotone invariant solutions to differential inclusions”, J. London Math. Soc., 16 (1977), 357–366 | DOI | MR | Zbl
[8] Saint-Pierre P., Quincampoix M., “An algorithm for viability Kernels in Holderian case: approximation by discrete dynamical systems”, J. Math. System Estim. Control, 5:1 (1995), 115–118 | MR | Zbl
[9] Quincampoix M., “Differential inclusions and target problems”, SIAM J. Control and Optimizat., 30:2 (1992), 324–335 | DOI | MR | Zbl
[10] Ushakov B. H., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya-ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 1980, no. 4, 32–45