@article{ZVMMF_2001_41_6_a10,
author = {T. Lin{\ss}},
title = {Uniform second-order pointwise convergence of a finite difference discretization for a quasilinear problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {947--958},
year = {2001},
volume = {41},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a10/}
}
TY - JOUR AU - T. Linß TI - Uniform second-order pointwise convergence of a finite difference discretization for a quasilinear problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 947 EP - 958 VL - 41 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a10/ LA - en ID - ZVMMF_2001_41_6_a10 ER -
%0 Journal Article %A T. Linß %T Uniform second-order pointwise convergence of a finite difference discretization for a quasilinear problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 947-958 %V 41 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a10/ %G en %F ZVMMF_2001_41_6_a10
T. Linß. Uniform second-order pointwise convergence of a finite difference discretization for a quasilinear problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 6, pp. 947-958. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_6_a10/
[1] Roos H.-G., Stynes M., Tobiska L., Numerical Methods for Singularity Perturbed Differential Equations, Springer Series in Computational Mathematics, 24, Springer, Berlin, 1996 | MR | Zbl
[2] Linß T., Roos H.-G., Vulanović R., “Uniform Pointwise Convergence on Shishkin-type Meshes for Quasilinear Convection-Diffusion Problems”, SIAM J. Numer. Anal., 38:3 (2000), 897–912 | DOI | MR | Zbl
[3] Vulanović R., “A Priori Meshes for Singularity Perturbed Quasilinear Two-Point Boundary Value Problems”, IMA J. Numer. Anal., 2000 | MR
[4] Bakhvalov N. S., “Towards Optimization of Methods for Solving Boundary Value Problems in the Presence of Boundary Layers”, USSR Comput. Mat. Mat. Phys., 9:4 (1969), 841–859 | MR | Zbl
[5] Vulanović R., Mesh Construction for Discretization of Singularly Perturbed Boundary Value Problems, Ph. D. Thesis, Univ. Novi Sad, 1986 | MR
[6] Shishkin G. I., “A Difference Scheme for a Singularly Perturbed Equation of Parabolic Type with Discontinuous Boundary Conditions”, USSR Comput. Mat. Mat. Phys., 28:11 (1988), 32–41 | DOI | MR | Zbl
[7] Roos H.-G., “Layer-adapted Grids for Singular Perturbation Problems”, Z. Angew. Math. Mech., 78 (1998), 291–309 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] Linß T., “Analysis of a Galerkin Finite Element Method on a Bakhvalov–Shishkin Mesh for a Linear Convection-Diffusion Problem”, IMA J. Numer. Anal., 20:4 (2000), 621–632 | DOI | MR | Zbl
[9] Linß T., “An Upwind Difference Scheme on a Novel Shishkin-type Mesh for a Linear Convection-Diffusion Problem”, J. Comput. Appl. Math., 110 (1999), 93–104 | DOI | MR | Zbl
[10] Roos H.-G., Linß T., “Sufficient Conditions for Uniform Convergence on Layer Adapted Grids”, Computing, 63 (1999), 27–45 | DOI | MR | Zbl
[11] Abrahamsson L., Osher S., “Monotone Difference Schemes for Singular Perturbation Problems”, SIAM J. Numer. Anal., 19 (1982), 979–992 | DOI | MR | Zbl
[12] Vulanović R., “A Uniform Method for Quasilinear Singular Perturbation Problems without Turning Points”, Computing, 41 (1989), 97–106 | DOI | MR | Zbl
[13] Andreev V. B., Savin I. A., “The Uniform Convergence with Respect to Small Parameter of A. A. Samarskii's Monotone Scheme and its Modification”, Comput. Mat. Mat. Phys., 35:5 (1995), 581–591 | MR | Zbl
[14] Stynes M., Roos H.-G., “The Midpoint Upwind Scheme”, Appl. Numer. Math., 32 (1997), 291–308 | MR
[15] Stynes M., Tobiska L., “A Finite Difference Analysis of a Streamline Diffusion Method on a Shishkin Mesh”, Numer. Algorithms, 18 (1998), 337–360 | DOI | MR | Zbl
[16] Lorentz J., “Stability and Monotonicity Properties of Stiff Quasilinear Boundary Problems”, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 12 (1982), 151–175 | MR
[17] Miller J. J. H., O'Riordan E., Shishkin G. I., Solution of Singularity Perturbed Problems with $\varepsilon$-uniform Numerical Methods — Introduction to the Theory of Linear Problems in One and Two Dimensions, World Scientific, Singapore, 1996
[18] O'Malley R. E. Jr., Singular Perturbation Methods for Ordinary Differential Equations, Appl. Math. Sci., 89, Springer, New York, 1991 | MR
[19] Andreev V. B., Kopteva N. V., “On the Uniformity with Respect to a Small Parameter of a Monotone Difference Scheme”, Differ. Uravn., 34 (1998), 921–928 (In Russian) | MR | Zbl