@article{ZVMMF_2001_41_5_a3,
author = {V. A. Tupchiev and N. A. Fomina},
title = {On the well-posedness of the {Cauchy} problem for the system of equations of chemotaxis},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {708--721},
year = {2001},
volume = {41},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_5_a3/}
}
TY - JOUR AU - V. A. Tupchiev AU - N. A. Fomina TI - On the well-posedness of the Cauchy problem for the system of equations of chemotaxis JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2001 SP - 708 EP - 721 VL - 41 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_5_a3/ LA - ru ID - ZVMMF_2001_41_5_a3 ER -
%0 Journal Article %A V. A. Tupchiev %A N. A. Fomina %T On the well-posedness of the Cauchy problem for the system of equations of chemotaxis %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2001 %P 708-721 %V 41 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_5_a3/ %G ru %F ZVMMF_2001_41_5_a3
V. A. Tupchiev; N. A. Fomina. On the well-posedness of the Cauchy problem for the system of equations of chemotaxis. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 5, pp. 708-721. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_5_a3/
[1] Keller E. F., Segel L. A., “Traveling bands of chemotactic bactria: a theoretical analysis”, J. Theor. Biol., 30 (1971), 235–248 | DOI | Zbl
[2] Rascle M., “On some “viscous” perturbations of quasi-linear first order hyporbolic systems arising in biology”, Contemporary Math., 17, 1983, 133–142 | MR | Zbl
[3] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR
[4] Tupchiev V. A., “Obobschennye resheniya zakonov sokhraneniya”, Obobschennye resheniya zakonov sokhraneniya, Uch. posobie po spetskursu, v. I, IATE, Obninsk, 1996
[5] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1976 | Zbl
[6] Shiryaev A. N., Veroyatnost, Fizmatgiz, M., 1980 | MR
[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Fizmatgiz, M., 1984 | MR | Zbl
[8] Galkin V. A., “Teoriya funktsionalnykh reshenii kvazilineinykh sistem zakonov sokhraneniya i ee prilozheniya”, Tr. seminara im. I. G. Petrovskogo, 20, Izd-vo MGU, M., 1997, 81–120
[9] Edvards R. E., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969
[10] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatgiz, M., 1972
[11] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR
[12] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962