On the well-posedness of the Cauchy problem for the system of equations of chemotaxis
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 5, pp. 708-721 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2001_41_5_a3,
     author = {V. A. Tupchiev and N. A. Fomina},
     title = {On the well-posedness of the {Cauchy} problem for the system of equations of chemotaxis},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {708--721},
     year = {2001},
     volume = {41},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_5_a3/}
}
TY  - JOUR
AU  - V. A. Tupchiev
AU  - N. A. Fomina
TI  - On the well-posedness of the Cauchy problem for the system of equations of chemotaxis
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2001
SP  - 708
EP  - 721
VL  - 41
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_5_a3/
LA  - ru
ID  - ZVMMF_2001_41_5_a3
ER  - 
%0 Journal Article
%A V. A. Tupchiev
%A N. A. Fomina
%T On the well-posedness of the Cauchy problem for the system of equations of chemotaxis
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2001
%P 708-721
%V 41
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_5_a3/
%G ru
%F ZVMMF_2001_41_5_a3
V. A. Tupchiev; N. A. Fomina. On the well-posedness of the Cauchy problem for the system of equations of chemotaxis. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 41 (2001) no. 5, pp. 708-721. http://geodesic.mathdoc.fr/item/ZVMMF_2001_41_5_a3/

[1] Keller E. F., Segel L. A., “Traveling bands of chemotactic bactria: a theoretical analysis”, J. Theor. Biol., 30 (1971), 235–248 | DOI | Zbl

[2] Rascle M., “On some “viscous” perturbations of quasi-linear first order hyporbolic systems arising in biology”, Contemporary Math., 17, 1983, 133–142 | MR | Zbl

[3] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[4] Tupchiev V. A., “Obobschennye resheniya zakonov sokhraneniya”, Obobschennye resheniya zakonov sokhraneniya, Uch. posobie po spetskursu, v. I, IATE, Obninsk, 1996

[5] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1976 | Zbl

[6] Shiryaev A. N., Veroyatnost, Fizmatgiz, M., 1980 | MR

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Fizmatgiz, M., 1984 | MR | Zbl

[8] Galkin V. A., “Teoriya funktsionalnykh reshenii kvazilineinykh sistem zakonov sokhraneniya i ee prilozheniya”, Tr. seminara im. I. G. Petrovskogo, 20, Izd-vo MGU, M., 1997, 81–120

[9] Edvards R. E., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[10] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatgiz, M., 1972

[11] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[12] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962